Peter W Graham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3161584/publications.pdf

Version: 2024-02-01

74 papers

6,150 citations

42 h-index 79698 73 g-index

74 all docs

74 docs citations

74 times ranked 5417 citing authors

#	Article	IF	CITATIONS
1	Experimental Searches for the Axion and Axion-Like Particles. Annual Review of Nuclear and Particle Science, 2015, 65, 485-514.	10.2	486
2	Cosmological Relaxation of the Electroweak Scale. Physical Review Letters, 2015, 115, 221801.	7.8	447
3	Testing General Relativity with Atom Interferometry. Physical Review Letters, 2007, 98, 111102.	7.8	265
4	Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr). Physical Review X, 2014, 4, .	8.9	265
5	Vector dark matter from inflationary fluctuations. Physical Review D, 2016, 93, .	4.7	256
6	New observables for direct detection of axion dark matter. Physical Review D, 2013, 88, .	4.7	249
7	Atomic gravitational wave interferometric sensor. Physical Review D, 2008, 78, .	4.7	239
8	New Method for Gravitational Wave Detection with Atomic Sensors. Physical Review Letters, 2013, 110, 171102.	7.8	234
9	AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space. EPJ Quantum Technology, 2020, 7, .	6.3	190
10	Dark matter triggers of supernovae. Physical Review D, 2015, 92, .	4.7	174
11	Dark matter direct detection with accelerometers. Physical Review D, 2016, 93, .	4.7	167
12	Semiconductor probes of light dark matter. Physics of the Dark Universe, 2012, 1, 32-49.	4.9	154
13	General relativistic effects in atom interferometry. Physical Review D, 2008, 78, .	4.7	141
14	An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO). General Relativity and Gravitation, 2011, 43, 1953-2009.	2.0	131
15	Radio for hidden-photon dark matter detection. Physical Review D, 2015, 92, .	4.7	128
16	Gravitational wave detection with atom interferometry. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 678, 37-40.	4.1	124
17	Stochastic axion scenario. Physical Review D, 2018, 98, .	4.7	115
18	Axion dark matter detection with cold molecules. Physical Review D, 2011, 84, .	4.7	114

#	Article	IF	CITATIONS
19	Astrophysical probes of unification. Physical Review D, 2009, 79, .	4.7	110
20	Dark Matter Searches with Astroparticle Data. Annual Review of Astronomy and Astrophysics, 2011, 49, 155-194.	24.3	100
21	Constraining Primordial Black Hole Abundance with the Galactic 511ÂkeV Line. Physical Review Letters, 2019, 123, 251102.	7.8	100
22	Displaced Supersymmetry. Journal of High Energy Physics, 2012, 2012, 1.	4.7	97
23	Exothermic dark matter. Physical Review D, 2010, 82, .	4.7	91
24	Axion dark matter detection with CMB polarization. Physical Review D, 2019, 100, .	4.7	90
25	Search for light scalar dark matter with atomic gravitational wave detectors. Physical Review D, 2018, 97, .	4.7	87
26	Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100). Quantum Science and Technology, 2021, 6, 044003.	5.8	80
27	Search for Axionlike Dark Matter with a Liquid-State Nuclear Spin Comagnetometer. Physical Review Letters, 2019, 122, 191302.	7.8	79
28	Resonant mode for gravitational wave detectors based on atom interferometry. Physical Review D, 2016, 94, .	4.7	78
29	Design Overview of DM Radio Pathfinder Experiment. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-4.	1.7	77
30	Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance. Science Advances, 2019, 5, eaax4539.	10.3	75
31	SAGE: A proposal for a space atomic gravity explorer. European Physical Journal D, 2019, 73, 1.	1.3	75
32	Spin precession experiments for light axionic dark matter. Physical Review D, 2018, 97, .	4.7	66
33	Limits on split supersymmetry from gluino cosmology. Physical Review D, 2005, 72, .	4.7	57
34	Decaying dark matter as a probe of unification and TeV spectroscopy. Physical Review D, 2009, 80, .	4.7	57
35	Muons in Supernovae: Implications for the Axion-Muon Coupling. Physical Review Letters, 2020, 125, 051104.	7.8	56
36	Little solution to the little hierarchy problem: A vectorlike generation. Physical Review D, 2010, 81, .	4.7	52

#	Article	IF	CITATIONS
37	Search for Axionlike Dark Matter Using Solid-State Nuclear Magnetic Resonance. Physical Review Letters, 2021, 126, 141802.	7.8	51
38	Observable signatures of dark photons from supernovae. Journal of High Energy Physics, 2019, 2019, 1.	4.7	50
39	Luminous dark matter. Physical Review D, 2010, 82, .	4.7	48
40	The cosmic axion spin precession experiment (CASPEr): a dark-matter search with nuclear magnetic resonance. Quantum Science and Technology, 2018, 3, 014008.	5.8	48
41	Exploring the robustness of stellar cooling constraints on light particles. Physical Review D, 2020, 102, .	4.7	48
42	White dwarfs as dark matter detectors. Physical Review D, 2018, 98, .	4.7	45
43	One loop predictions of the finely tuned supersymmetric standard model. Physical Review D, 2004, 70, .	4.7	40
44	Parametrically enhanced hidden photon search. Physical Review D, 2014, 90, .	4.7	35
45	Supernova signals of light dark matter. Physical Review D, 2019, 100, .	4.7	32
46	A simple harmonic universe. Journal of High Energy Physics, 2014, 2014, 1.	4.7	29
47	Relaxation of the cosmological constant. Physical Review D, 2019, 100, .	4.7	29
48	Storage ring probes of dark matter and dark energy. Physical Review D, 2021, 103, .	4.7	29
49	Localizing gravitational wave sources with single-baseline atom interferometers. Physical Review D, 2018, 97, .	4.7	24
50	Dark energy radiation. Physical Review D, 2021, 104, .	4.7	24
51	Asteroids for <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>$\hat{1}\frac{1}{4}$</mml:mi><mml:mi>Hz</mml:mi></mml:mrow></mml:math> gravitational-wave detection. Physical Review D, 2022, 105, .	4.7	22
52	Observing the dimensionality of our parent vacuum. Physical Review D, 2010, 82, .	4.7	21
53	Millicharged Dark Matter Detection with Ion Traps. PRX Quantum, 2022, 3, .	9.2	20
54	Earth as a transducer for dark-photon dark-matter detection. Physical Review D, 2021, 104, .	4.7	19

#	Article	IF	CITATIONS
55	Gravity Probe Spin: Prospects for measuring general-relativistic precession of intrinsic spin using a ferromagnetic gyroscope. Physical Review D, 2021, 103, .	4.7	18
56	Displaced vertices from R-parity violation and baryogenesis. Physical Review D, 2014, 89, .	4.7	16
57	Exploring eternal stability with the simple harmonic universe. Journal of High Energy Physics, 2014, 2014, 1.	4.7	15
58	Born again universe. Physical Review D, 2018, 97, .	4.7	15
59	Earth as a transducer for axion dark-matter detection. Physical Review D, 2022, 105, .	4.7	15
60	Supersymmetric crevices: Missing signatures of R-parity violation at the LHC. Physical Review D, 2014, 90, .	4.7	14
61	Gravity gradient noise from asteroids. Physical Review D, 2021, 103, .	4.7	14
62	Search for dark photon dark matter: Dark <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>E</mml:mi></mml:math> field radio pilot experiment. Physical Review D, 2021, 104, .	4.7	14
63	Testing long-distance modifications of gravity to 100 astronomical units. Physical Review D, 2015, 92, .	4.7	13
64	Search for dark-photon dark matter in the SuperMAG geomagnetic field dataset. Physical Review D, 2021, 104 , .	4.7	13
65	Reply to "Comment on â€~Atomic gravitational wave interferometric sensor' ― Physical Review D, 2011, 84, .	4.7	12
66	Indirect signals from dark matter in split supersymmetry. Physical Review D, 2005, 72, .	4.7	11
67	Warming up cold inflation. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 011.	5.4	11
68	Domino theory of flavor. Physical Review D, 2010, 81, .	4.7	10
69	White dwarf bounds on charged massive particles. Physical Review D, 2020, 101, .	4.7	10
70	AEDGE: Atomic experiment for dark matter and gravity exploration in space. Experimental Astronomy, 0, , 1.	3.7	9
71	New measurements with stopped particles at the LHC. Physical Review D, 2012, 86, .	4.7	7
72	Astrometric gravitational-wave detection via stellar interferometry. Physical Review D, 2022, 106, .	4.7	7

#	Article	IF	CITATIONS
73	Towards a Bullet-proof test for indirect signals of dark matter. Physical Review D, 2015, 91, .	4.7	4
74	Wu etÂal. Reply:. Physical Review Letters, 2019, 123, 169002.	7.8	2