
Zhi Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3161530/publications.pdf Version: 2024-02-01

7<u>01</u>100

#	Article	IF	CITATIONS
1	Renewable biomass-derived carbon-supported g-C3N4 doped with Ag for enhanced photocatalytic reduction of CO2. Journal of Colloid and Interface Science, 2022, 606, 1311-1321.	9.4	45
2	Constructing Schottky junctions via Pd nanosheets on DUT-67 surfaces to accelerate charge transfer. Journal of Colloid and Interface Science, 2022, 608, 3022-3029.	9.4	13
3	Attapulgite-interpenetrated g-C3N4/Bi2WO6 quantum-dots Z-scheme heterojunction for 2-mercaptobenzothiazole degradation with mechanism insight. Chemical Engineering Journal, 2022, 435, 134918.	12.7	31
4	Bridging between NiAl-LDH and g-C3N4 by using carbon quantum dots for highly enhanced photoreduction of CO2 into CO. Journal of Colloid and Interface Science, 2022, 622, 21-30.	9.4	15
5	Highly Durable and Efficient Ni-FeO <i>_x</i> /FeNi ₃ Electrocatalysts Synthesized by a Facile <i>In Situ</i> Combustion-Based Method for Overall Water Splitting with Large Current Densities. ACS Applied Materials & Interfaces, 2022, 14, 27842-27853.	8.0	34
6	Construction of a ZnIn ₂ S ₄ /Au/CdS Tandem Heterojunction for Highly Efficient CO ₂ Photoreduction. Inorganic Chemistry, 2022, 61, 11207-11217.	4.0	24
7	Construction of a CsPbBr ₃ modified porous g-C ₃ N ₄ photocatalyst for effective reduction of CO ₂ and mechanism exploration. New Journal of Chemistry, 2021, 45, 1082-1091.	2.8	12
8	Biomass-Assisted Synthesis of CeO ₂ Nanorods for CO ₂ Photoreduction under Visible Light. ACS Applied Nano Materials, 2021, 4, 4226-4237.	5.0	15
9	Flower-like CoAl layered double hydroxides modified with CeO2 and RGO as efficient photocatalyst towards CO2 reduction. Journal of Alloys and Compounds, 2021, 881, 160650.	5.5	25
10	Fabrication of CoFe2O4-modified and HNTs-supported g-C3N4 heterojunction photocatalysts for enhancing MBT degradation activity under visible light. Journal of Materials Science, 2020, 55, 4358-4371.	3.7	25
11	Synthesis Ce-doped biomass carbon-based g-C3N4 via plant growing guide and temperature-programmed technique for degrading 2-Mercaptobenzothiazole. Applied Catalysis B: Environmental, 2020, 268, 118432.	20.2	92
12	Fabrication of a Z-scheme MoS ₂ /CuO heterojunction for enhanced 2-mercaptobenzothiazole degradation activity and mechanism insight. New Journal of Chemistry, 2020, 44, 18264-18273.	2.8	21
13	Self-Template Synthesis of Multiheteroatom Codoped Porous Carbon with Rational Mesoporosity from Traditional Chinese Medicine Dregs for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 11667-11681.	6.7	23
14	Ultrathin magnetic Mg-Al LDH photocatalyst for enhanced CO2 reduction: Fabrication and mechanism. Journal of Colloid and Interface Science, 2019, 555, 1-10.	9.4	76
15	Morphological transformation of calcium phenylphosphonate microspheres induced by micellization of Î ³ -polyglutamic acid. Journal of Colloid and Interface Science, 2019, 556, 33-46.	9.4	2
16	Photocatalytic removal using g-C3N4 quantum dots/Bi2Ti2O7 composites. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 213, 19-27.	3.9	22
17	Three-dimensional graphene aerogel supported Ir nanocomposite as a highly efficient catalyst for chemoselective cinnamaldehyde hydrogenation. Diamond and Related Materials, 2019, 91, 272-282.	3.9	7
18	Construction of spindle structured CeO ₂ modified with rod-like attapulgite as a high-performance photocatalyst for CO ₂ reduction. Catalysis Science and Technology, 2019, 9, 3788-3799.	4.1	20

Zнı Liu

#	Article	IF	CITATIONS
19	A two step hydrothermal process to prepare carbon spheres from bamboo for construction of core–shell non-metallic photocatalysts. New Journal of Chemistry, 2018, 42, 6515-6524.	2.8	22
20	Improving methane selectivity of photo-induced CO2 reduction on carbon dots through modification of nitrogen-containing groups and graphitization. Applied Catalysis B: Environmental, 2018, 232, 86-92.	20.2	48
21	Threeâ€Dimensionally Hierarchical Pt/C Nanocomposite with Ultraâ€High Dispersion of Pt Nanoparticles as a Highly Efficient Catalyst for Chemoselective Cinnamaldehyde Hydrogenation. ChemCatChem, 2018, 10, 779-788.	3.7	25
22	Fabrication of magnetic g-C3N4 for effectively enhanced tetracycline degradation with RGO as mediator. New Journal of Chemistry, 2018, 42, 15974-15984.	2.8	21
23	Waste Biomass Basedâ€Activated Carbons Derived from Soybean Pods as Electrode Materials for Highâ€Performance Supercapacitors. ChemistrySelect, 2018, 3, 5726-5732.	1.5	44
24	Interconnected three-dimensionally hierarchical heterostructures with homogeneously-dispersed V2O5 nanocrystals and carbon for high performance supercapacitor electrodes. Electrochimica Acta, 2017, 229, 155-165.	5.2	26
25	Intercalation Effect of Attapulgite in g-C ₃ N ₄ Modified with Fe ₃ O ₄ Quantum Dots To Enhance Photocatalytic Activity for Removing 2-Mercaptobenzothiazole under Visible Light. ACS Sustainable Chemistry and Engineering, 2017, 5, 10614-10623.	6.7	109
26	Interpenetrating Framework with Three-Dimensionally Ordered Macroporous Carbon Substrates and Well-Dispersed Co ₃ O ₄ Nanocrystals for Supercapacitor. Journal of the Electrochemical Society, 2016, 163, A417-A426.	2.9	14
27	A facile synthesis of a uniform constitution of three-dimensionally ordered macroporous TiO ₂ –carbon nanocomposites with hierarchical pores for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 6862-6872.	10.3	29
28	Highly dispersed MnO _x nanoparticles supported on three-dimensionally ordered macroporous carbon: a novel nanocomposite for catalytic reduction of NO _x with NH ₃ at low temperature. RSC Advances, 2015, 5, 29577-29588.	3.6	22
29	Synthesis of three-dimensionally ordered macroporous manganese dioxide–carbon nanocomposites for supercapacitors. Journal of Power Sources, 2014, 267, 812-820.	7.8	37
30	Synthesis, structure, spectroscopy of four novel supramolecular complexes and cytotoxicity study by application of multiple parallel perfused microbioreactors. New Journal of Chemistry, 2014, 38, 3258-3268.	2.8	12
31	Fast synthesis of mesoporous γ-alumina assisted by a room temperature ionic liquid and its use as a support for the promotional catalytic performance of dibenzothiophene hydrodesulfurization. RSC Advances, 2014, 4, 10221.	3.6	11
32	Easy synthesis of phosphorus-incorporated three-dimensionally ordered macroporous carbons with hierarchical pores and their use as electrodes for supercapacitors. Electrochimica Acta, 2014, 115, 206-215.	5.2	52
33	Easy synthesis of bimetal PtFe-containing ordered mesoporous carbons and their use as catalysts for selective cinnamaldehyde hydrogenation. New Journal of Chemistry, 2013, 37, 1350.	2.8	26
34	Dual-templating fabrication of three-dimensionally ordered macroporous ceria with hierarchical pores and its use as a support for enhanced catalytic performance of preferential CO oxidation. International Journal of Hydrogen Energy, 2013, 38, 4445-4455.	7.1	23
35	Sucrose-assisted synthesis of three-dimensionally ordered macroporous CeO2 and its use as a support for promotional catalytic performance of CO oxidation. Applied Surface Science, 2013, 283, 290-296.	6.1	10
36	One-pot synthesis of Fe, Co and Ni-doped carbon xerogels and their magnetic properties. Journal of Physics and Chemistry of Solids, 2013, 74, 1275-1280.	4.0	23

Zнı Liu

#	Article	IF	CITATIONS
37	Synthesis, characterization and electrochemical properties of three-dimensionally ordered macroporous α-Fe2O3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1612-1617.	3.5	7
38	Synthesis of copper-containing ordered mesoporous carbons for selective hydrogenation of cinnamaldehyde. Catalysis Communications, 2012, 21, 58-62.	3.3	34
39	Synthesis, characterization and magnetic performance of Co-incorporated ordered mesoporous carbons. Materials Research Bulletin, 2012, 47, 274-278.	5.2	6
40	Ir–C xerogels synthesized by sol–gel method for NO reduction. Catalysis Today, 2008, 137, 162-166.	4.4	18
41	Reduction of NO by Cu–carbon and Co–carbon xerogels. Carbon, 2006, 44, 2345-2347.	10.3	13