Mark Y Sangster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3161298/publications.pdf

Version: 2024-02-01

52	5,860	30	51
papers	citations	h-index	g-index
59	59	59	6711 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Association of Human Milk Antibody Induction, Persistence, and Neutralizing Capacity With SARS-CoV-2 Infection vs mRNA Vaccination. JAMA Pediatrics, 2022, 176, 159.	6.2	74
2	Formation and Expansion of Memory B Cells against Coronavirus in Acutely Infected COVID-19 Individuals. Pathogens, 2022, 11, 186.	2.8	4
3	Short term results of vaccination with adjuvanted recombinant varicella zoster glycoprotein E during initial BTK inhibitor therapy for CLL or lymphoplasmacytic lymphoma. Leukemia, 2021, 35, 1788-1791.	7.2	29
4	Immunity to Influenza Infection in Humans. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038729.	6.2	8
5	Characterization of SARS-CoV-2 RNA, Antibodies, and Neutralizing Capacity in Milk Produced by Women with COVID-19. MBio, 2021, 12, .	4.1	208
6	Squalene-Based Influenza Vaccine Adjuvants and Their Impact on the Hemagglutinin-Specific B Cell Response. Pathogens, 2021, 10, 355.	2.8	25
7	Broadly Reactive IgG Responses to Heterologous H5 Prime-Boost Influenza Vaccination Are Shaped by Antigenic Relatedness to Priming Strains. MBio, 2021, 12, e0044921.	4.1	10
8	S Protein-Reactive IgG and Memory B Cell Production after Human SARS-CoV-2 Infection Includes Broad Reactivity to the S2 Subunit. MBio, 2020, 11 , .	4.1	188
9	Analysis of Antigen‧pecific Human Memory B Cell Populations Based on In Vitro Polyclonal Stimulation. Current Protocols in Immunology, 2020, 131, e109.	3.6	4
10	Array-based analysis of SARS-CoV-2, other coronaviruses, and influenza antibodies in convalescent COVID-19 patients. Biosensors and Bioelectronics, 2020, 169, 112643.	10.1	30
11	Implementing sequence-based antigenic distance calculation into immunological shape space model. BMC Bioinformatics, 2020, 21, 256.	2.6	2
12	Role of Memory B Cells in Hemagglutinin-Specific Antibody Production Following Human Influenza A Virus Infection. Pathogens, 2019, 8, 167.	2.8	20
13	Broad Hemagglutinin-Specific Memory B Cell Expansion by Seasonal Influenza Virus Infection Reflects Early-Life Imprinting and Adaptation to the Infecting Virus. Journal of Virology, 2019, 93, .	3.4	50
14	Pandemic influenza vaccines: what they have taught us about B cell immunology. Current Opinion in Immunology, 2018, 53, 203-208.	5.5	7
15	Broad cross-reactive IgG responses elicited by adjuvanted vaccination with recombinant influenza hemagglutinin (rHA) in ferrets and mice. PLoS ONE, 2018, 13, e0193680.	2.5	23
16	Antigenicity of the 2015–2016 seasonal H1N1 human influenza virus HA and NA proteins. PLoS ONE, 2017, 12, e0188267.	2.5	46
17	Generation and Protective Ability of Influenza Virus–Specific Antibody-Dependent Cellular Cytotoxicity in Humans Elicited by Vaccination, Natural Infection, and Experimental Challenge. Journal of Infectious Diseases, 2016, 214, 945-952.	4.0	84
18	Long-Lasting Impact of Neonatal Exposure to Total Body Gamma Radiation on Secondary Lymphoid Organ Structure and Function. Radiation Research, 2015, 184, 352-366.	1.5	3

#	Article	IF	CITATIONS
19	High-Affinity H7 Head and Stalk Domain–Specific Antibody Responses to an Inactivated Influenza H7N7 Vaccine After Priming With Live Attenuated Influenza Vaccine. Journal of Infectious Diseases, 2015, 212, 1270-1278.	4.0	43
20	Robust mucosal-homing antibody-secreting B cell responses induced by intramuscular administration of adjuvanted bivalent human norovirus-like particle vaccine. Vaccine, 2015, 33, 568-576.	3.8	41
21	Passive Broad-Spectrum Influenza Immunoprophylaxis. Influenza Research and Treatment, 2014, 2014, 1-9.	1.5	4
22	CD4 T Cell Help Is Limiting and Selective during the Primary B Cell Response to Influenza Virus Infection. Journal of Virology, 2014, 88, 314-324.	3.4	58
23	Live attenuated H7N7 influenza vaccine primes for a vigorous antibody response to inactivated H7N7 influenza vaccine. Vaccine, 2014, 32, 6798-6804.	3.8	65
24	Modeling the Dynamics and Migratory Pathways of Virus-Specific Antibody-Secreting Cell Populations in Primary Influenza Infection. PLoS ONE, 2014, 9, e104781.	2.5	2
25	Heterovariant Cross-Reactive B-Cell Responses Induced by the 2009 Pandemic Influenza Virus A Subtype H1N1 Vaccine. Journal of Infectious Diseases, 2013, 207, 288-296.	4.0	23
26	B Cell Response and Hemagglutinin Stalk-Reactive Antibody Production in Different Age Cohorts following 2009 H1N1 Influenza Virus Vaccination. Vaccine Journal, 2013, 20, 867-876.	3.1	59
27	Host Differences in Influenza-Specific CD4 T Cell and B Cell Responses Are Modulated by Viral Strain and Route of Immunization. PLoS ONE, 2012, 7, e34377.	2.5	11
28	Time-Dependent Effects of Pomegranate Juice and Pomegranate Polyphenols on Foodborne Viral Reduction. Foodborne Pathogens and Disease, 2011, 8, 1177-1183.	1.8	62
29	T cell immunoglobulin and mucin protein-3 (Tim-3)/Galectin-9 interaction regulates influenza A virus-specific humoral and CD8 T-cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19001-19006.	7.1	89
30	Influenza virus variation in susceptibility to inactivation by pomegranate polyphenols is determined by envelope glycoproteins. Antiviral Research, 2010, 88, 1-9.	4.1	68
31	Quantitative analysis of influenza virus-specific B cell memory generated by different routes of inactivated virus vaccination. Vaccine, 2010, 28, 2186-2194.	3.8	33
32	<i>In Vitro</i> Effects of Pomegranate Juice and Pomegranate Polyphenols on Foodborne Viral Surrogates. Foodborne Pathogens and Disease, 2010, 7, 1473-1479.	1.8	80
33	The Generation of Influenza-Specific Humoral Responses Is Impaired in ST6Gal I-Deficient Mice. Journal of Immunology, 2009, 182, 4721-4727.	0.8	14
34	Eμ-BCL10 mice exhibit constitutive activation of both canonical and noncanonical NF-ÎB pathways generating marginal zone (MZ) B-cell expansion as a precursor to splenic MZ lymphoma. Blood, 2009, 114, 4158-4168.	1.4	55
35	Broad dispersion and lung localization of virus-specific memory B cells induced by influenza pneumonia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3485-3490.	7.1	79
36	Defective influenzaâ€specific B cell responses in mice lacking expression of ST6Galâ€. FASEB Journal, 2008, 22, .	0.5	0

#	Article	IF	CITATIONS
37	Quantitative analysis of herpes simplex virus type 1-specific memory B cells generated by different routes of infection. Virology, 2007, 360, 136-142.	2.4	6
38	A strategy for selective, CD4+ T cell-independent activation of virus-specific memory B cells for limiting dilution analysis. Journal of Immunological Methods, 2006, 313, 110-118.	1.4	9
39	Pathogenesis of Hong Kong H5N1 influenza virus NS gene reassortants in mice: the role of cytokines and B- and T-cell responses. Journal of General Virology, 2005, 86, 1121-1130.	2.9	155
40	An Early CD4+ T Cell–dependent Immunoglobulin A Response to Influenza Infection in the Absence of Key Cognate T–B Interactions. Journal of Experimental Medicine, 2003, 198, 1011-1021.	8.5	104
41	Dissecting the host response to a γ–herpesvirus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 581-593.	4.0	120
42	Analysis of the Virus-Specific and Nonspecific B Cell Response to a Persistent B-Lymphotropic Gammaherpesvirus. Journal of Immunology, 2000, 164, 1820-1828.	0.8	109
43	Phospholipase $\hat{Cl^3}$ 2 Is Essential in the Functions of B Cell and Several Fc Receptors. Immunity, 2000, 13, 25-35.	14.3	444
44	Stat5 Is Required for IL-2-Induced Cell Cycle Progression of Peripheral T Cells. Immunity, 1999, 10, 249-259.	14.3	530
45	Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. Nature Medicine, 1998, 4, 1253-1260.	30.7	143
46	Restoration of lymphocyte function in Janus Kinase 3-deficient mice by retroviral-mediated gene transfer. Nature Medicine, 1998, 4, 58-64.	30.7	143
47	Intranasal Sendai virus vaccine protects African green monkeys from infection with human parainfluenza virus-type one. Vaccine, 1997, 15, 533-540.	3.8	64
48	Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted State6 gene. Nature, 1996, 380, 630-633.	27.8	1,223
49	Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature, 1996, 382, 171-174.	27.8	1,059
50	Distinctive Kinetics of the Antibody-Forming Cell Response to Sendai Virus Infection of Mice in Different Anatomical Compartments. Virology, 1995, 207, 287-291.	2.4	45
51	Human Parainfluenza Virus Type 1 Immunization of Infant Mice Protects from Subsequent Sendai Virus Infection. Virology, 1995, 212, 13-19.	2.4	30
52	Phenotypic inhibition of the renin-angiotensin system, emergence of the ren-2 gene, and adaptive radiation of mice. General and Comparative Endocrinology, 1991, 83, 306-315.	1.8	26