Adam P Hitchcock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3160901/publications.pdf

Version: 2024-02-01

217 papers 9,139 citations

41344 49 h-index 51608 86 g-index

227 all docs

227 docs citations

times ranked

227

7934 citing authors

#	Article	IF	Citations
1	Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source. Journal of Synchrotron Radiation, 2003, 10, 125-136.	2.4	625
2	Resonances in the K shell excitation spectra of benzene and pyridine: Gas phase, solid, and chemisorbed states. Journal of Chemical Physics, 1985, 83, 6099-6107.	3.0	361
3	Scanning Transmission X-Ray, Laser Scanning, and Transmission Electron Microscopy Mapping of the Exopolymeric Matrix of Microbial Biofilms. Applied and Environmental Microbiology, 2003, 69, 5543-5554.	3.1	331
4	Determination of intramolecular bond lengths in gas phase molecules from K shell shape resonances. Journal of Chemical Physics, 1984, 81, 4906-4914.	3.0	320
5	NEXAFS microscopy and resonant scattering: Composition and orientation probed in real and reciprocal space. Polymer, 2008, 49, 643-675.	3.8	261
6	Innershell Absorption Spectroscopy of Amino Acids. Journal of Physical Chemistry A, 2002, 106, 3153-3168.	2.5	209
7	Spectromicroscopy of Poly(ethylene terephthalate):  Comparison of Spectra and Radiation Damage Rates in X-ray Absorption and Electron Energy Loss. Journal of Physical Chemistry B, 1997, 101, 1950-1960.	2.6	187
8	Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiology Ecology, 2010, 72, 1-21.	2.7	187
9	Inner-shell spectroscopy of p-benzoquinone, hydroquinone, and phenol: distinguishing quinoid and benzenoid structures. The Journal of Physical Chemistry, 1992, 96, 6598-6610.	2.9	177
10	Inner-Shell Excitation Spectroscopy of the Peptide Bond:  Comparison of the C 1s, N 1s, and O 1s Spectra of Glycine, Glycyl-Glycine, and Glycyl-Glycyl-Glycine. Journal of Physical Chemistry A, 2003, 107, 6144-6159.	2.5	162
11	Quantitative Mapping of Structured Polymeric Systems Using Singular Value Decomposition Analysis of Soft X-ray Images. Journal of Physical Chemistry B, 2002, 106, 5358-5364.	2.6	146
12	Absolute oscillator strengths fromK-shell electron-energy-loss spectra of the fluoroethenes and 1,3-perfluorobutadiene. Physical Review A, 1987, 36, 1683-1701.	2.5	139
13	Speciation and Quantitative Mapping of Metal Species in Microbial Biofilms Using Scanning Transmission X-ray Microscopy. Environmental Science & Environology, 2006, 40, 1556-1565.	10.0	132
14	Iron Biochemistry is Correlated with Amyloid Plaque Morphology in an Established Mouse Model of Alzheimer's Disease. Cell Chemical Biology, 2017, 24, 1205-1215.e3.	5.2	128
15	Inner-shell spectroscopy of benzaldehyde, terephthalaldehyde, ethylbenzoate, terephthaloyl chloride and phosgene: models for core excitation of poly(ethylene terephthalate). The Journal of Physical Chemistry, 1992, 96, 8736-8750.	2.9	101
16	NEXAFS spectromicroscopy of polymers: overview and quantitative analysis of polyurethane polymers. Journal of Electron Spectroscopy and Related Phenomena, 1999, 100, 119-135.	1.7	101
17	A scanning transmission x-ray microscope for materials science spectromicroscopy at the advanced light source. Review of Scientific Instruments, 1998, 69, 2964-2973.	1.3	96
18	A quantitative experimental study of the core excited electronic states of formamide, formic acid, and formyl fluoride. Journal of Chemical Physics, 1987, 87, 830-839.	3.0	92

#	Article	IF	Citations
19	Soft X-ray spectromicroscopy and ptychography. Journal of Electron Spectroscopy and Related Phenomena, 2015, 200, 49-63.	1.7	90
20	Comparison of NEXAFS microscopy and TEM-EELS for studies of soft matter. Micron, 2008, 39, 311-319.	2.2	86
21	Using Intrinsic X-ray Absorption Spectral Differences To Identify and Map Peptides and Proteins. Journal of Physical Chemistry B, 2007, 111, 7691-7699.	2.6	83
22	Soft Xâ€ray spectromicroscopy of nickel sorption in a natural river biofilm. Geobiology, 2009, 7, 432-453.	2.4	82
23	Core Excitation and Ionization of Molecules. Physica Scripta, 1990, T31, 159-170.	2.5	81
24	Three-dimensional chemical mapping by scanning transmission X-ray spectromicroscopy. Journal of Synchrotron Radiation, 2007, 14, 395-402.	2.4	77
25	Inner shell excitation of glycine, glycyl-glycine, alanine and phenylalanine. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137-140, 795-799.	1.7	76
26	Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft X-ray ptychography. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8219-E8227.	7.1	75
27	Soft X-ray spectromicroscopy of biological and synthetic polymer systems. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 259-269.	1.7	74
28	Quantitative mapping of chlorhexidine in natural river biofilms. Science of the Total Environment, 2006, 369, 369-383.	8.0	74
29	Ar 2p spectroscopy of free argon clusters. Journal of Chemical Physics, 1993, 98, 2653-2663.	3.0	72
30	Carbon corrosion of proton exchange membrane fuel cell catalyst layers studied by scanning transmission X-ray microscopy. Journal of Power Sources, 2014, 266, 66-78.	7.8	72
31	NephilaclavipesSpider Dragline Silk Microstructure Studied by Scanning Transmission X-ray Microscopy. Journal of the American Chemical Society, 2007, 129, 3897-3905.	13.7	70
32	Identification and Quantitation of Urea Precipitates in Flexible Polyurethane Foam Formulations by X-ray Spectromicroscopy. Macromolecules, 2002, 35, 5873-5882.	4.8	69
33	Innerâ€shell excitations in weakâ€bond molecules. Journal of Chemical Physics, 1987, 87, 4344-4360.	3.0	68
34	Towards practical soft X-ray spectromicroscopy of biomaterials. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 919-937.	3.5	67
35	Characterizing magnetism of individual magnetosomes by X-ray magnetic circular dichroism in a scanning transmission X-ray microscope. Chemical Geology, 2010, 270, 110-116.	3.3	67
36	Core Excitation Spectroscopy of Stable Cyclic Diaminocarbenes, -silylenes, and -germylenes. Organometallics, 1999, 18, 1862-1872.	2.3	66

#	Article	IF	CITATIONS
37	In Situ Spatial and Time-Resolved Studies of Electrochemical Reactions by Scanning Transmission X-ray Microscopy. Analytical Chemistry, 2005, 77, 3479-3487.	6.5	66
38	Quantitative Evaluation of Radiation Damage to Polyethylene Terephthalate by Soft X-rays and High-energy Electrons. Journal of Physical Chemistry B, 2009, 113, 1869-1876.	2.6	66
39	Inner-Shell Excitation Spectroscopy of Polymer and Monomer Isomers of Dimethyl Phthalate. Journal of Physical Chemistry B, 1997, 101, 2267-2276.	2.6	65
40	lonic fragmentation of SF6ionised in the sulphur 2p shell. Journal of Physics B: Atomic and Molecular Physics, 1978, 11, 3245-3261.	1.6	64
41	The $\parallel f^*$ molecular orbitals of perfluoroalkanes as studied by inner-shell electron energy loss and electron transmission spectroscopies. Canadian Journal of Chemistry, 1988, 66, 2104-2121.	1.1	62
42	Introduction of Soft X-Ray Spectromicroscopy as an Advanced Technique for Plant Biopolymers Research. PLoS ONE, 2015, 10, e0122959.	2.5	62
43	Analysis of polyurethanes using core excitation spectroscopy. Part II: Inner shell spectra of ether, urea and carbamate model compounds. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 1603-1620.	2.1	60
44	Advances in the Detection of As in Environmental Samples Using Low Energy X-ray Fluorescence in a Scanning Transmission X-ray Microscope: Arsenic Immobilization by an Fe(II)-Oxidizing Freshwater Bacteria. Environmental Science & Environmental Sci	10.0	60
45	Comparison of NEXAFS microscopy and TEM-EELS for studies of soft matter. Micron, 2008, 39, 741-748.	2.2	58
46	Nickel partitioning in biogenic and abiogenic ferrihydrite: The influence of silica and implications for ancient environments. Geochimica Et Cosmochimica Acta, 2014, 140, 65-79.	3.9	56
47	Quantitative Mapping of the Orientation of Fibroin \hat{l}^2 -Sheets inB.moriCocoon Fibers by Scanning Transmission X-ray Microscopy. Biomacromolecules, 2006, 7, 836-843.	5.4	54
48	Electrochemical Reaction of Aqueous Iron Sulfate Solutions Studied by Fe L-Edge Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 16343-16348.	3.1	54
49	Composite Tectocapsules Containing Porous Polymer Microspheres as Release Gates. Macromolecules, 2005, 38, 2903-2910.	4.8	53
50	Individual Multiwall Carbon Nanotubes Spectroscopy by Scanning Transmission X-ray Microscopy. Nano Letters, 2007, 7, 2435-2440.	9.1	51
51	Near-Edge X-ray Absorption Fine Structure Spectroscopy of MDI and TDI Polyurethane Polymers. Journal of Physical Chemistry B, 1999, 103, 4603-4610.	2.6	50
52	Soft Xâ€ray spectroâ€tomography study of cyanobacterial biomineral nucleation. Geobiology, 2009, 7, 577-591.	2.4	49
53	Soft X-ray spectromicroscopy of polymers and biopolymer interfaces. Journal of Synchrotron Radiation, 2001, 8, 66-71.	2.4	48
54	X-ray Microscopy Studies of Protein Adsorption on a Phase-Segregated Polystyrene/Polymethyl Methacrylate Surface. 1. Concentration and Exposure-Time Dependence for Albumin Adsorption. Journal of Physical Chemistry B, 2006, 110, 16763-16773.	2.6	48

#	Article	IF	CITATIONS
55	4D imaging of polymer electrolyte membrane fuel cell catalyst layers by soft X-ray spectro-tomography. Journal of Power Sources, 2018, 381, 72-83.	7.8	48
56	Morphological and biochemical changes in <i>Pseudomonas fluorescens </i> biofilms induced by sub-inhibitory exposure to antimicrobial agents. Canadian Journal of Microbiology, 2009, 55, 163-178.	1.7	47
57	Quantitative Compositional Mapping of Coreâ°'Shell Polymer Microspheres by Soft X-ray Spectromicroscopy. Macromolecules, 2001, 34, 4424-4429.	4.8	46
58	Polarization Dependence of the C 1s Xâ€ray Absorption Spectra of Individual Multiâ€Walled Carbon Nanotubes. Small, 2008, 4, 2279-2285.	10.0	46
59	Soft X-ray spectromicroscopy development for materials science at the Advanced Light Source. Journal of Electron Spectroscopy and Related Phenomena, 1997, 84, 85-98.	1.7	45
60	Quantitative Characterization of Microscopic Variations in the Cross-Link Density of Gels. Macromolecules, 2002, 35, 1336-1341.	4.8	44
61	Mapping the Speciation of Iron in <i>Pseudomonas aeruginosa</i> Transmission X-ray Microscopy. Environmental Science & Environ	10.0	43
62	Phase Segregation in Polystyreneâ^'Polylactide Blends. Macromolecules, 2009, 42, 1679-1684.	4.8	43
63	Early Stages of Copper Electrocrystallization:  Electrochemical and in Situ X-ray Absorption Fine Structure Studies of Coadsorption of Copper and Chloride at the Au(111) Electrode Surface. Journal of Physical Chemistry B, 1997, 101, 10310-10322.	2.6	42
64	Inner shell excitation spectroscopy of molecules using inelastic electron scattering. Journal of Electron Spectroscopy and Related Phenomena, 2000, 112, 9-29.	1.7	42
65	Dynamic Stabilization in1σu→1πgExcited Nitrogen Clusters. Physical Review Letters, 2001, 86, 3767-3770.	7.8	42
66	STXM Study of the Ionomer Distribution in the PEM Fuel Cell Catalyst Layers. ECS Transactions, 2011, 41, 629-635.	0.5	42
67	Inner Shell Excitation Spectroscopy of Biphenyl and Substituted Biphenyls:Â Probing Ringâ^'Ring Delocalization. Journal of Physical Chemistry A, 2005, 109, 10886-10896.	2.5	39
68	Comparative Study of the Valence Electronic Excitations of mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mi< a=""> mathvariant="bold">N<mml:mn>2</mml:mn></mml:mi<></mml:msub> by Inelastic X-Ray and Electron Scattering, Physical Review Letters, 2010, 105, 053202.	7.8	39
69	Characterisation of the dissimilatory reduction of Fe(III)â€oxyhydroxide at the microbe – mineral interface: the application of STXM–XMCD. Geobiology, 2012, 10, 347-354.	2.4	39
70	Kâ€shell spectroscopy of Ar clusters. Journal of Chemical Physics, 1993, 98, 6820-6826.	3.0	38
71	Optimization of analysis of soft X-ray spectromicroscopy at the Ca 2p edge. Journal of Electron Spectroscopy and Related Phenomena, 2009, 173, 44-49.	1.7	38
72	Effects of fullerene (C60), multi-wall carbon nanotubes (MWCNT), single wall carbon nanotubes (SWCNT) and hydroxyl and carboxyl modified single wall carbon nanotubes on riverine microbial communities. Environmental Science and Pollution Research, 2016, 23, 10090-10102.	5. 3	38

#	Article	IF	CITATIONS
73	Anomalous Quasielastic Electron Scattering from SingleH2,D2, and HD Molecules at Large Momentum Transfer: Indications of Nuclear Spin Effects. Physical Review Letters, 2008, 100, 043204.	7.8	37
74	Characterization of Biomaterials by Soft X-Ray Spectromicroscopy. Materials, 2010, 3, 3911-3938.	2.9	37
75	Monitoring the fate of copper nanoparticles in river biofilms using scanning transmission X-ray microscopy (STXM). Chemical Geology, 2012, 329, 18-25.	3.3	37
76	3D Chemical Mapping of PEM Fuel Cell Cathodes by Scanning Transmission Soft X-ray SpectroTomography. ECS Transactions, 2013, 50, 361-368.	0.5	37
77	Measuring Point Defect Density in Individual Carbon Nanotubes Using Polarization-Dependent X-ray Microscopy. ACS Nano, 2010, 4, 4431-4436.	14.6	36
78	Complex organic corona formation on carbon nanotubes reduces microbial toxicity by suppressing reactive oxygen species production. Environmental Science: Nano, 2016, 3, 181-189.	4.3	35
79	High-Resolution Imaging of Polymer Electrolyte Membrane Fuel Cell Cathode Layers by Soft X-ray Spectro-Ptychography. Journal of Physical Chemistry C, 2018, 122, 11709-11719.	3.1	35
80	Scanning transmission x-ray microscopy of isolated multiwall carbon nanotubes. Applied Physics Letters, 2006, 89, 093123.	3.3	34
81	Investigating the effect of a single glycine to alanine substitution on interactions of antimicrobial peptide latarcinÂ2a with a lipid membrane. European Biophysics Journal, 2011, 40, 1087-1100.	2.2	34
82	3d chemical mapping of toners by serial section scanning transmission X-ray microscopy. European Physical Journal Special Topics, 2003, 104, 509-512.	0.2	33
83	Variable linear polarization from an X-ray undulator. Journal of Synchrotron Radiation, 2002, 9, 270-274.	2.4	32
84	X-ray Microscopy Studies of Protein Adsorption on a Phase Segregated Polystyrene/Polymethylmethacrylate Surface. 2. Effect of pH on Site Preference. Journal of Physical Chemistry B, 2008, 112, 2150-2158.	2.6	32
85	X-ray Spectromicroscopy Study of Protein Adsorption to a Polystyreneâ^'Polylactide Blend. Biomacromolecules, 2009, 10, 1838-1845.	5.4	32
86	Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia. Environmental Science & Environmental Scie	10.0	32
87	A New Approach to Studying Microcapsule Wall Growth Mechanisms. Macromolecules, 2009, 42, 2428-2432.	4.8	32
88	Investigating the effects of L- to D-amino acid substitution and deamidation on the activity and membrane interactions of antimicrobial peptide anoplin. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1592-1600.	2.6	32
89	Scanning transmission X-ray microscopy of nano structured thin filmÂcatalysts for proton-exchange-membrane fuel cells. Journal of Power Sources, 2014, 263, 163-174.	7.8	32
90	Optimization of scanning transmission X-ray microscopy for the identification and quantitation of reinforcing particles in polyurethanes. Ultramicroscopy, 2001, 88, 33-49.	1.9	31

#	Article	IF	Citations
91	Experimental and theoretical study of generalized oscillator strengths for C1sand O1sexcitations in CO2. Physical Review A, 2000, 61, .	2.5	30
92	Characterization of Single-Walled Carbon Nanotubes by Scanning Transmission X-ray Spectromicroscopy: Purification, Order and Dodecyl Functionalization. Journal of the American Chemical Society, 2010, 132, 9020-9029.	13.7	30
93	Interfacial Interactions in Polypropyleneâ 'Organoclayâ' Elastomer Nanocomposites: Influence of Polar Modifications on the Location of the Clay. Macromolecules, 2011, 44, 2179-2189.	4.8	30
94	Experimental and theoretical studies of the (C 1sâ^'1,ï∈*)3Î state of CO: Momentum transfer dependence and vibrational structure. Journal of Chemical Physics, 1994, 101, 10429-10435.	3.0	29
95	Quantitative Chemical Mapping of Nanostructured "Onionlike―Poly(methyl methacrylate)/Polystyrene Composite Particles by Soft X-ray Microscopy. Macromolecules, 2005, 38, 542-551.	4.8	29
96	Chemical Mapping of Polymer Microstructure Using Soft X-ray Spectromicroscopy. Australian Journal of Chemistry, 2005, 58, 423.	0.9	28
97	Inner-shell excitation of gas phase carbonates and $\hat{l}_{\pm},\hat{l}_{-}^3$ -dicarbonyl compounds. Chemical Physics, 2007, 331, 289-303.	1.9	28
98	Accurate dosimetry in scanning transmission X-ray microscopes <i>via</i> the cross-linking threshold dose of poly(methyl methacrylate). Journal of Synchrotron Radiation, 2012, 19, 976-987.	2.4	28
99	Spectromicroscopy and coherent diffraction imaging: focus on energy materials applications. Journal of Synchrotron Radiation, 2014, 21, 1019-1030.	2.4	27
100	Spatially resolved TiOx phases in switched RRAM devices using soft X-ray spectromicroscopy. Scientific Reports, 2016, 6, 21525.	3.3	27
101	Probing platinum degradation in polymer electrolyte membrane fuel cells by synchrotron X-ray microscopy. Physical Chemistry Chemical Physics, 2012, 14, 4835.	2.8	26
102	Chemically selective soft X-ray patterning of polymers. Journal of Synchrotron Radiation, 2007, 14, 181-190.	2.4	25
103	3-d chemical imaging using angle-scan nanotomography in a soft X-ray scanning transmission X-ray microscope. Applied Physics A: Materials Science and Processing, 2008, 92, 447-452.	2.3	25
104	Polyurea microcapsules: Surface modification and capsule size control. Journal of Polymer Science Part A, 2011, 49, 3038-3047.	2.3	25
105	STXM Characterization of PEM Fuel Cell Catalyst Layers. ECS Transactions, 2013, 50, 405-413.	0.5	24
106	Anomalous Magnetic Orientations of Magnetosome Chains in a Magnetotactic Bacterium: Magnetovibrio blakemorei Strain MV-1. PLoS ONE, 2013, 8, e53368.	2.5	23
107	Inner-shell excitation of gas-phase and polymer thin-film 3-alkylthiophenes by electron energy loss and x-ray photoabsorption spectroscopy. The Journal of Physical Chemistry, 1990, 94, 2327-2333.	2.9	22
108	Core Excitation Spectroscopy of Phenyl- and Methyl-Substituted Silanol, Disiloxane, and Disilane Compounds:Â Evidence for l€-Delocalization across the Siâ^CphenylBond. Organometallics, 1997, 16, 2080-2088.	2.3	22

#	Article	IF	Citations
109	Zone plate focused soft X-ray lithography. Applied Physics A: Materials Science and Processing, 2011, 103, 1-11.	2.3	22
110	Evaluating focused ion beam and ultramicrotome sample preparation for analytical microscopies of the cathode layer of a polymer electrolyte membrane fuel cell. Journal of Power Sources, 2016, 312, 23-35.	7.8	22
111	Magnetite magnetosome biomineralization in Magnetospirillum magneticum strain AMB-1: A time course study. Chemical Geology, 2019, 530, 119348.	3.3	22
112	Analysis of polyurethanes using core excitation spectroscopy. Part I: Model polyurethane foam polymers. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 1593-1602.	2.1	21
113	Experimental investigation of beam heating in a soft X-ray scanning transmission X-ray microscope. Analyst, The, 2012, 137, 370-375.	3.5	21
114	Synchrotron-Based Chemical Nano-Tomography of Microbial Cell-Mineral Aggregates in their Natural, Hydrated State. Microscopy and Microanalysis, 2014, 20, 531-536.	0.4	21
115	Magnetosome magnetite biomineralization in a flagellated protist: evidence for an early evolutionary origin for magnetoreception in eukaryotes. Environmental Microbiology, 2020, 22, 1495-1506.	3.8	21
116	Microscopic and Spectroscopic Analyses of Chlorhexidine Tolerance in Delftia acidovorans Biofilms. Antimicrobial Agents and Chemotherapy, 2014, 58, 5673-5686.	3.2	20
117	Soft Xâ€ray spectromicroscopy for speciation, quantitation and nanoâ€ecoâ€toxicology of nanomaterials. Journal of Microscopy, 2016, 261, 130-147.	1.8	20
118	Quantitative Mapping of Ionomer in Catalyst Layers by Electron and X-ray Spectromicroscopy. ECS Transactions, 2017, 80, 275-282.	0.5	20
119	Electron Compton scattering from methane and methane-d4. Journal of Electron Spectroscopy and Related Phenomena, 2007, 155, 28-34.	1.7	19
120	An X-ray Spectromicroscopy Study of Protein Adsorption to Polystyreneâ^'Poly(ethylene oxide) Blends. Langmuir, 2010, 26, 14759-14765.	3.5	19
121	Secondary electron deposition mechanism of carbon contamination. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	1.2	19
122	Spectromicroscopy of C60 and azafullerene C59N: Identifying surface adsorbed water. Scientific Reports, 2016, 6, 35605.	3.3	19
123	Instrumentation for <i>in situ</i> flow electrochemical Scanning Transmission X-ray Microscopy (STXM). Review of Scientific Instruments, 2018, 89, 063702.	1.3	19
124	Chemically Selective Soft X-ray Direct-Write Patterning of Multilayer Polymer Films. Journal of Physical Chemistry C, 2007, 111, 16330-16338.	3.1	18
125	X-ray Absorption and Solid-State NMR Spectroscopy of Fluorinated Proton Conducting Polymers. Journal of Physical Chemistry C, 2018, 122, 3233-3244.	3.1	18
126	Ptychography at the carbon K-edge. Communications Materials, 2022, 3, .	6.9	18

#	Article	IF	Citations
127	A new sample preparation method for biological soft X-ray microscopy: nitrogen-based contrast and radiation tolerance properties of glycol methacrylate-embedded and sectioned tissue. Journal of Microscopy, 2001, 204, 69-86.	1.8	17
128	SOFT X-RAY MICROSCOPY OF SOFT MATTER â€" HARD INFORMATION FROM TWO SOFTS. Surface Review and Letters, 2002, 09, 193-201.	1.1	17
129	Generalized oscillator strengths for C 1s excitation of acetylene and ethylene. Journal of Electron Spectroscopy and Related Phenomena, 2002, 123, 303-314.	1.7	17
130	Imaging Hydrated Albumin on a Polystyreneâ^Poly(methyl methacrylate) Blend Surface with X-ray Spectromicroscopy. Langmuir, 2009, 25, 13332-13335.	3.5	17
131	Metallic and Semiconducting Single-Walled Carbon Nanotubes: Differentiating Individual SWCNTs by Their Carbon 1s Spectra. ACS Nano, 2012, 6, 10965-10972.	14.6	17
132	Mapping defects in a carbon nanotube by momentum transfer dependent electron energy loss spectromicroscopy. Ultramicroscopy, 2012, 113, 158-164.	1.9	17
133	Characterization of Polymer Monoliths Containing Embedded Nanoparticles by Scanning Transmission X-ray Microscopy (STXM). Analytical Chemistry, 2014, 86, 2876-2881.	6.5	17
134	Cryo scanning transmission x-ray microscope optimized for spectrotomography. Review of Scientific Instruments, 2018, 89, 093704.	1.3	17
135	Recent Advances in Inner-Shell Excitation of Free Molecules by Electron Energy Loss Spectroscopy. , 1982, , .		16
136	Chemical component mapping of pulverized toner by scanning transmission X-ray microscopy. Micron, 2006, 37, 290-295.	2.2	16
137	Understanding energy loss in large-angle scattering of keV electrons from Ar and Ne. Physical Review A, 2011, 83, .	2.5	16
138	Sub-25nm direct write (maskless) X-ray nanolithography. Microelectronic Engineering, 2013, 108, 5-7.	2.4	16
139	Imaging Reactivity of the Pt–Ionomer Interface in Fuel-Cell Catalyst Layers. ACS Catalysis, 2020, 10, 8285-8292.	11.2	16
140	Quantitative chemical mapping of sodium acrylate- and N-vinylpyrrolidone-enhanced alginate microcapsules. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 611-627.	3.5	15
141	In situ azimuthal rotation device for linear dichroism measurements in scanning transmission x-ray microscopy. Review of Scientific Instruments, 2007, 78, 033703.	1.3	15
142	Examining the chemistry and magnetism of magnetotactic bacterium Candidatus Magnetovibrio blakemorei strain MV-1 using scanning transmission X-ray microscopy. Chemical Geology, 2012, 300-301, 14-23.	3.3	15
143	What is the correct Fe L23 X-ray absorption spectrum of magnetite?. Journal of Electron Spectroscopy and Related Phenomena, 2015, 199, 19-26.	1.7	15
144	Characterizing surface states in hematite nanorod photoanodes, both beneficial and detrimental to solar water splitting efficiency. Journal of Materials Chemistry A, 2020, 8, 20513-20530.	10.3	15

#	Article	IF	Citations
145	X-ray spectromicroscopy study of competitive adsorption of protein and peptide onto polystyrene-poly(methyl methacrylate). Biointerphases, 2008, 3, FB27-FB35.	1.6	14
146	Nano to Micro Scale Characterization of Water Uptake in The Catalyst Coated Membrane Measured by Soft X-ray Scanning Transmission X-ray Microscopy. ECS Transactions, 2011, 41, 395-402.	0.5	14
147	4D Imaging of ZnO-Coated Nanoporous Al ₂ O ₃ Aerogels by Chemically Sensitive Ptychographic Tomography: Implications for Designer Catalysts. ACS Applied Nano Materials, 2021, 4, 621-632.	5.0	14
148	Quasielastic electron scattering from methane, methane-d4, methane-d2, ethylene, and 2-methylpropane. Journal of Chemical Physics, 2007, 127, 084315.	3.0	13
149	Electron Compton-like quasielastic scattering from H2, D2, and HD. Journal of Chemical Physics, 2009, 130, 144303.	3.0	13
150	Imaging interactions of cationic antimicrobial peptides with model lipid monolayers using X-ray spectromicroscopy. European Biophysics Journal, 2011, 40, 805-810.	2.2	13
151	Radiation damage yields across the carbon 1s excitation edge. Journal of Electron Spectroscopy and Related Phenomena, 2016, 206, 58-64.	1.7	13
152	Performance of the HERMES beamline at the carbon K-edge. Journal of Physics: Conference Series, 2017, 849, 012046.	0.4	13
153	Four-Dimensional Imaging of ZnO-Coated Alumina Aerogels by Scanning Transmission X-ray Microscopy and Ptychographic Tomography. Journal of Physical Chemistry C, 2018, 122, 25374-25385.	3.1	13
154	Biomineralization at Titanium Revealed by Correlative 4D Tomographic and Spectroscopic Methods. Advanced Materials Interfaces, 2018, 5, 1800262.	3.7	13
155	Electron beam damage of perfluorosulfonic acid studied by soft X-ray spectromicroscopy. Micron, 2019, 121, 8-20.	2.2	12
156	Optimization of Three-Dimensional (3D) Chemical Imaging by Soft X-Ray Spectro-Tomography Using a Compressed Sensing Algorithm. Microscopy and Microanalysis, 2017, 23, 951-966.	0.4	11
157	Characterization of X-ray Damage to Perfluorosulfonic Acid Using Correlative Microscopy. Journal of Physical Chemistry C, 2019, 123, 16023-16033.	3.1	11
158	Electron beam damage of epoxy resin films studied by scanning transmission X-ray spectromicroscopy. Micron, 2019, 120, 74-79.	2.2	11
159	Inner shell excitation spectroscopy of transient molecules: HBS, HBO, and H3B3O3. Journal of Chemical Physics, 1999, 111, 3468-3478.	3.0	10
160	Effect of humidity on individual SnO2 coated carbon nanotubes studied by in situ STXM. Journal of Electron Spectroscopy and Related Phenomena, 2011, 184, 296-300.	1.7	10
161	Using X-PEEM to study biomaterials: Protein and peptide adsorption to a polystyrene–poly(methyl) Tj ETQq1 ∑2012, 185, 406-416.	l 0.784314 1.7	4 rgBT /Overl 10
162	Individual Titanate Nanoribbons Studied by 3D-Resolved Polarization Dependent X-ray Absorption Spectra Measured with Scanning Transmission X-ray Microscopy. Journal of Physical Chemistry C, 2015, 119, 24192-24200.	3.1	10

#	Article	IF	Citations
163	Importance of the RpoE Regulon in Maintaining the Lipid Bilayer during Antimicrobial Treatment with the Polycationic Agent, Chlorhexidine. Proteomics, 2018, 18, 1700285.	2.2	10
164	Measurement of the point spread function of a soft x-ray microscope by single pixel exposure of photoresists. Proceedings of SPIE, 2011, , .	0.8	8
165	STXM Characterization of Nanostructured Thin Film Anode Before and After Start-Up Shutdown and Reversal Tests. ECS Transactions, 2013, 58, 473-479.	0.5	8
166	Effect of UV radiation damage in air on polymer film thickness, studied by soft X-ray spectromicroscopy. Physical Chemistry Chemical Physics, 2018, 20, 16625-16640.	2.8	8
167	Membrane-Modulating Drugs can Affect the Size of Amyloid-β25–35 Aggregates in Anionic Membranes. Scientific Reports, 2018, 8, 12367.	3.3	8
168	Chemical Structure and Distribution in Nickel–Nitrogen–Carbon Catalysts for CO ₂ Electroreduction Identified by Scanning Transmission X-ray Microscopy. ACS Catalysis, 2022, 12, 8746-8760.	11.2	8
169	Quantitative oscillator strengths for ionic fragmentation of C 1s and O 1s excited CO. Canadian Journal of Chemistry, 2004, 82, 1052-1060.	1.1	7
170	Inner-Shell Excitation Spectroscopy and X-ray Photoemission Electron Microscopy of Adhesion Promoters. Journal of Physical Chemistry B, 2005, 109, 6343-6354.	2.6	7
171	Mapping molecular orientation in dry and wet <i>Nephila clavipes</i> dragline spider silk. Journal of Physics: Conference Series, 2009, 186, 012089.	0.4	7
172	Advances in structural and chemical analysis of catalystcoated membranes for hydrogen fuel cell applications. Membrane Technology, 2009, 2009, 6-12.	0.1	7
173	(Plenary) Doing More with Less: Challenges for Catalyst Layer Design. ECS Transactions, 2016, 75, 3-23.	0.5	7
174	Inner-shell excitation spectroscopy of peroxides. Chemical Physics, 2015, 461, 117-124.	1.9	6
175	Progress in Soft X-ray Microscopy Characterization of PEM Fuel Cell Catalyst Layers. Microscopy and Microanalysis, 2016, 22, 1290-1291.	0.4	6
176	First-principles X-ray absorption dose calculation for time-dependent mass and optical density. Journal of Synchrotron Radiation, 2018, 25, 833-847.	2.4	6
177	X-ray Absorption Spectroscopy and Magnetism of Synthetic Greigite and Greigite Magnetosomes in Magnetotactic Bacteria. Geomicrobiology Journal, 2018, 35, 215-226.	2.0	6
178	Principles of optical design of the SM beamline at the CLS. AIP Conference Proceedings, 2004, , .	0.4	5
179	Chemically sensitive 3D imaging at sub $100\mathrm{nm}$ spatial resolution using tomography in a scanning transmission x-ray microscope. , $2006, \ldots$		5
180	3-d chemical imaging with STXM tomography. Journal of Physics: Conference Series, 2009, 186, 012045.	0.4	5

#	Article	IF	CITATIONS
181	Double Cation Formation from the Photo-Fragmentation of the closo-Carboranes. Zeitschrift Fur Physikalische Chemie, 2014, 228, 421-436.	2.8	5
182	Quantification of the critical dose for radiation damage to perfluorosulfonic acid membranes using soft X-ray microscopy. Microscopy and Microanalysis, 2015, 21, 2443-2444.	0.4	5
183	Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy. AIP Conference Proceedings, 2016, , .	0.4	5
184	X-ray Absorption Spectroscopy and Spectromicroscopy of Supported Lipid Bilayers. Journal of Physical Chemistry B, 2017, 121, 4492-4501.	2.6	5
185	<i>In-situ</i> and <i>Operando</i> Studies with Soft X-Ray Transmission Spectromicroscopy. Microscopy and Microanalysis, 2021, 27, 59-60.	0.4	5
186	PHOTOIONIZATION DYNAMICS FROM INNER SHELL MASS SPECTROMETRY. Advanced Series in Physical Chemistry, 2002, , 154-227.	1.5	4
187	Fission processes following core level excitation in <i>closo</i> â€1,2â€orthocarborane. Physica Status Solidi (B): Basic Research, 2009, 246, 1496-1503.	1.5	4
188	Magnetic studies of magnetotactic bacteria by soft x-ray STXM and ptychography. AIP Conference Proceedings, 2016, , .	0.4	4
189	Development of in-situ sample cells for scanning transmission x-ray microscopy. AIP Conference Proceedings, 2016, , .	0.4	4
190	Optimizing Soft X-ray Spectromicroscopy for Fuel Cell Studies: X-ray Damage of Ionomer Microscopy and Microanalysis, 2018, 24, 460-461.	0.4	4
191	Misalignment between the magnetic dipole moment and the cell axis in the magnetotactic bacterium <i>Magnetospirillum magneticum</i> AMB-1. Physical Biology, 2019, 16, 066008.	1.8	4
192	P 1s spectroscopy of SPF3: spectral assignments aided by angle-resolved photodissociation. Chemical Physics Letters, 1999, 300, 451-459.	2.6	3
193	lonic fragmentation of C 1s excited and ionized formic acid. Chemical Physics, 2006, 326, 589-599.	1.9	3
194	Design and performance of an (e, e+ion) spectrometer for studies of fragmentation of dipole and non-dipole states of gaseous molecules. Journal of Electron Spectroscopy and Related Phenomena, 2007, 156-158, 86-91.	1.7	3
195	In situ Methods for Analysis of Polymer Electrolyte Membrane Fuel Cell Materials by Soft X-ray Scanning Transmission X-ray Microscopy. Microscopy and Microanalysis, 2014, 20, 1532-1533.	0.4	3
196	Effects of Sample Preparation Technique on Quantitative Analysis of Automotive Fuel Cell Catalyst Layers. Microscopy and Microanalysis, 2014, 20, 472-473.	0.4	3
197	Electro-deposition of Cu studied with in situ electrochemical scanning transmission x-ray microscopy. AIP Conference Proceedings, 2016, , .	0.4	3
198	Magnetic Field Landscapes Guiding the Chemisorption of Diamagnetic Molecules. Langmuir, 2016, 32, 10491-10496.	3.5	3

#	Article	IF	CITATIONS
199	Low background, UHV compatible scintillator detector for the CLS cryo scanning soft X-ray microscope. Journal of Physics: Conference Series, 2017, 849, 012045.	0.4	3
200	Advances in Structural Characterization Using Soft X-ray Scanning Transmission Microscopy (STXM): Mapping and Measuring Porosity in PEM-FC Catalyst Layers. ECS Transactions, 2017, 80, 241-252.	0.5	3
201	Nanoscale chemical mapping of exometabolites at fungal–mineral interfaces. Geobiology, 2022, 20, 650-666.	2.4	3
202	Scanning transmission X-ray microscopy of multi-walled carbon nanotubes. Journal of Physics: Conference Series, 2009, 186, 012106.	0.4	2
203	Xâ€ray spectromicroscopy study of ubiquitin adsorption to plasma polymerized microstructures. Surface and Interface Analysis, 2010, 42, 830-834.	1.8	2
204	Zone plate focused soft x-ray lithography for fabrication of nanofluidic devices. , 2012, , .		2
205	Fabrication of sealed nanofluidic channels using site-selective direct write (maskless) X-ray lithography. Microfluidics and Nanofluidics, 2013, 15, 509-518.	2.2	2
206	4d Imaging of Polymer Electrolyte Membrane Fuel Cell Cathodes by Scanning X-Ray Microscopy. Microscopy and Microanalysis, 2017, 23, 1784-1785.	0.4	1
207	How do Magnetotactic Bacteria Synthesize Magnetite? - a Soft X-ray Spectroscopy, Spectromicroscopy and Magnetism Time Course Study. Microscopy and Microanalysis, 2018, 24, 378-379.	0.4	1
208	Correlative Spectromicroscopy and Tomography for Biomedical Applications Involving Electron, Ion, and Soft X-ray Microscopies. Microscopy Today, 2019, 27, 12-19.	0.3	1
209	Calculating absorption dose when X-ray irradiation modifies material quantity and chemistry. Journal of Synchrotron Radiation, 2021, 28, 834-848.	2.4	1
210	Towards a Canadian synchrotron light source. Synchrotron Radiation News, 1991, 4, 4-4.	0.8	0
211	Soft X-ray Spectromicroscopy of Protein Interactions with Phase-Segregated Polymer Surfaces. ACS Symposium Series, 2012, , 731-760.	0.5	0
212	Correlative Spectromicroscopy and Tomography Involving Soft X-ray Methods. Microscopy and Microanalysis, 2018, 24, 364-365.	0.4	0
213	Influence of Local Environment on Inner Shell Excitation Spectra, Studied by Electron and X-ray Spectroscopy and Spectromicroscopy. Zeitschrift Fur Physikalische Chemie, 2018, 232, 723-745.	2.8	0
214	Soft X-ray Spectrotomographic Microscopy at Cryogenic Temperatures. Microscopy and Microanalysis, 2018, 24, 260-261.	0.4	0
215	Spatially Resolved Soft X-ray Spectroscopy in Scanning X-ray Microscopes. Microscopy and Microanalysis, 2019, 25, 254-255.	0.4	0
216	XRM 2018. Synchrotron Radiation News, 2019, 32, 28-29.	0.8	0

ARTICLE IF CITATIONS

217 Quantitative chemistry and orientation of polymers in 2-d and 3-d by scanning transmission X-ray microscopy. , 2008, , 753-754.