

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3160306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic Investigation of H ₂ O ₂ â€dependent Chemiluminescence from Tetrabromoâ€1,4â€Benzoquinone. ChemPhysChem, 2022, 23, e202100885.	2.1	3
2	The critical role of superoxide anion radicals on delaying tetrachlorohydroquinone autooxidation by penicillamine. Free Radical Biology and Medicine, 2021, 163, 369-378.	2.9	4
3	Mechanistic Study on Chemiluminescence of Chloranilic Acid by Co(II)-Mediated Fenton-like System. Journal of Organic Chemistry, 2021, 86, 4472-4482.	3.2	0
4	Structure–Activity Relationship Investigation on Reaction Mechanism between Chlorinated Quinoid Carcinogens and Clinically-Used Aldoxime Nerve-Agent Antidote under Physiological Condition. Chemical Research in Toxicology, 2021, 34, 1091-1100.	3.3	0
5	Caffeic Acid Phenyl Ester (CAPE) Protects against Iron-Mediated Cellular DNA Damage through Its Strong Iron-Binding Ability and High Lipophilicity. Antioxidants, 2021, 10, 798.	5.1	10
6	Detecting and Quantifying Polyhaloaromatic Environmental Pollutants by Chemiluminescence-Based Analytical Method. Molecules, 2021, 26, 3365.	3.8	4
7	Mechanistic Study on Oxidative DNA Damage and Modifications by Haloquinoid Carcinogenic Intermediates and Disinfection Byproducts. Chemical Research in Toxicology, 2021, 34, 1701-1712.	3.3	5
8	The cell-impermeable Ru(II) polypyridyl complex as a potent intracellular photosensitizer under visible light irradiation via ion-pairing with suitable lipophilic counter-anions. Free Radical Biology and Medicine, 2021, 171, 69-79.	2.9	9
9	An unexpected new pathway for nitroxide radical production via more reactve nitrogen-centered amidyl radical intermediate during detoxification of the carcinogenic halogenated quinones by N-alkyl hydroxamic acids. Free Radical Biology and Medicine, 2020, 146, 150-159.	2.9	8
10	Unexpected activation of N-alkyl hydroxamic acids to produce reactive N-centered free radicals and DNA damage by carcinogenic chlorinated quinones under normal physiological conditions. Free Radical Biology and Medicine, 2020, 146, 70-78.	2.9	10
11	Chiral Os(II) Polypyridyl Complexes as Enantioselective Nuclear DNA Imaging Agents Especially Suitable for Correlative High-Resolution Light and Electron Microscopy Studies. ACS Applied Materials & Interfaces, 2020, 12, 3465-3473.	8.0	12
12	An unexpected antioxidant and redox activity for the classic copper-chelating drug penicillamine. Free Radical Biology and Medicine, 2020, 147, 150-158.	2.9	14
13	First Direct and Unequivocal Electron Spin Resonance Spin-Trapping Evidence for pH-Dependent Production of Hydroxyl Radicals from Sulfate Radicals. Environmental Science & Technology, 2020, 54, 14046-14056.	10.0	110
14	Mechanism of synergistic DNA damage induced by caffeic acid phenethyl ester (CAPE) and Cu(II): Competitive binding between CAPE and DNA with Cu(II)/Cu(I). Free Radical Biology and Medicine, 2020, 159, 107-118.	2.9	10
15	First unequivocal identification of the critical acyl radicals from the anti-tuberculosis drug isoniazid and its hydrazide analogs by complementary applications of ESR spin-trapping and HPLC/MS methods. Free Radical Biology and Medicine, 2020, 154, 1-8.	2.9	11
16	Molecular mechanisms and potential applications of the intrinsic chemiluminescence produced from the degradation of haloaromatic pollutants during environmentally-friendly advanced oxidation processes. Environmental Science: Water Research and Technology, 2020, 6, 2259-2274.	2.4	3
17	Unprecedented strong intrinsic chemiluminescence generation from degradation of halogenated hydroxy-quinoid pollutants by Co(II)-mediated advanced oxidation processes: The critical role of site-specific production of hydroxyl radicals. Chemical Engineering Journal, 2020, 394, 125023.	12.7	10
18	Molecular mechanism for the activation of the anti-tuberculosis drug isoniazid by Mn(III): First detection and unequivocal identification of the critical N-centered isoniazidyl radical and its exact location. Free Radical Biology and Medicine, 2019, 143, 232-239.	2.9	10

Li Mao

#	Article	IF	CITATIONS
19	Strengthened Fenton degradation of phenol catalyzed by core/shell Fe–Pd@C nanocomposites derived from mechanochemically synthesized Fe-Metal organic frameworks. Water Research, 2019, 162, 151-160.	11.3	93
20	Mechanism of unprecedented hydroxyl radical production and site-specific oxidative DNA damage by photoactivation of the classic arylhydroxamic acid carcinogens. Carcinogenesis, 2019, , .	2.8	6
21	Mechanism of synergistic DNA damage induced by the hydroquinone metabolite of brominated phenolic environmental pollutants and Cu(II): Formation of DNA-Cu complex and site-specific production of hydroxyl radicals. Free Radical Biology and Medicine, 2017, 104, 54-63.	2.9	40
22	Mechanism of Intrinsic Chemiluminescence Production from the Degradation of Persistent Chlorinated Phenols by the Fenton System: A Structure–Activity Relationship Study and the Critical Role of Quinoid and Semiquinone Radical Intermediates. Environmental Science & Technology, 2017, 51, 2934-2943.	10.0	27
23	Intrinsic chemiluminescence production from the degradation of haloaromatic pollutants during environmentally-friendly advanced oxidation processes: Mechanism, structure–activity relationship and potential applications. Journal of Environmental Sciences, 2017, 62, 68-83.	6.1	13
24	Different modes of synergistic toxicities between metam/copper (II) and metam/zinc (II) in HepG2 cells: apoptosis vs. necrosis. Environmental Toxicology, 2016, 31, 1964-1973.	4.0	16
25	Why Does 2,3,5,6-Tetrachlorophenol Generate the Strongest Intrinsic Chemiluminescence among All Nineteen Chlorophenolic Persistent Organic Pollutants during Environmentally-friendly Advanced Oxidation Process?. Scientific Reports, 2016, 6, 33159.	3.3	15
26	Intrinsic Chemiluminescence Generation during Advanced Oxidation of Persistent Halogenated Aromatic Carcinogens. Environmental Science & amp; Technology, 2015, 49, 7940-7947.	10.0	29
27	Molecular Mechanism of Metal-Independent Decomposition of Organic Hydroperoxides by Halogenated Quinoid Carcinogens and the Potential Biological Implications. Chemical Research in Toxicology, 2015, 28, 831-837.	3.3	44
28	Detoxifying Polyhalogenated Catechols through a Copperâ€Chelating Agent by Forming Stable and Redoxâ€Inactive Hydrogenâ€Bonded Complexes with an Unusual Perpendicular Structure. Chemistry - A European Journal, 2014, 20, 13028-13033.	3.3	5
29	Molecular mechanism of metal-independent decomposition of lipid hydroperoxide 13-HPODE by halogenated quinoid carcinogens. Free Radical Biology and Medicine, 2013, 63, 459-466.	2.9	20
30	The first purification and unequivocal characterization of the radical form of the carbon-centered quinone ketoxy radical adduct. Chemical Communications, 2013, 49, 6436.	4.1	29
31	Unprecedented hydroxyl radical-dependent two-step chemiluminescence production by polyhalogenated quinoid carcinogens and H ₂ O ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16046-16051.	7.1	89
32	Metal-Independent Pathways of Chlorinated Phenol/Quinone Toxicity. Advances in Molecular Toxicology, 2011, 5, 1-43.	0.4	11
33	Detoxifying carcinogenic polyhalogenated quinones by hydroxamic acids via an unusual double Lossen rearrangement mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20686-20690.	7.1	47
34	Metal-independent decomposition of hydroperoxides by halogenated quinones: Detection and identification of a quinone ketoxy radical. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11466-11471.	7.1	80