
Lindsay Beevers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3160184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The impact of data spatial resolution on flood vulnerability assessment. Environmental Hazards, 2022, 21, 77-98.	1.4	1
2	Understanding urban resilience with the urban systems abstraction hierarchy (USAH). Sustainable Cities and Society, 2022, 80, 103729.	5.1	11
3	Modelling systemic COVID-19 impacts in cities. Npj Urban Sustainability, 2022, 2, .	3.7	6
4	Editorial: Reflecting on progress in water management adaptation to climate change. Water Management, 2022, 175, 109-110.	0.4	0
5	Exploring the raison d'etre behind metric selection in network analysis: a systematic review. Applied Network Science, 2022, 7, .	0.8	7
6	Social vulnerability to drought in rural Malawi. , 2021, , 81-107.		2
7	Mapping future water scarcity in a water abundant nation: Near-term projections for Scotland. Climate Risk Management, 2021, 32, 100302.	1.5	7
8	Analyzing city-scale resilience using a novel systems approach. , 2021, , 179-201.		4
9	The Role of Digital Technologies in Responding to the Grand Challenges of the Natural Environment: The Windermere Accord. Patterns, 2021, 2, 100156.	3.1	6
10	Towards Intangible Freshwater Cultural Ecosystem Services: Informing Sustainable Water Resources Management. Water (Switzerland), 2021, 13, 535.	1.2	3
11	Resilience in Complex Catchment Systems. Water (Switzerland), 2021, 13, 541.	1.2	6
12	Quality assessment of crowdsourced social media data for urban flood management. Computers, Environment and Urban Systems, 2021, 90, 101690.	3.3	23
13	Quantifying Uncertainty in the Modelling Process; Future Extreme Flood Event Projections Across the UK. Geosciences (Switzerland), 2021, 11, 33.	1.0	5
14	Flood resilience: a systematic review. Journal of Environmental Planning and Management, 2020, 63, 1151-1176.	2.4	106
15	Enhancing production and flow of freshwater ecosystem services in a managed Himalayan river system under uncertain future climate. Climatic Change, 2020, 162, 343-361.	1.7	22
16	The influence of climate model uncertainty on fluvial flood hazard estimation. Natural Hazards, 2020, 104, 2489-2510.	1.6	10
17	Editorial to the Special Issue: Impacts of Compound Hydrological Hazards or Extremes. Geosciences (Switzerland), 2020, 10, 496.	1.0	2
18	Urban Systems: Mapping Interdependencies and Outcomes to Support Systems Thinking. Earth's Future, 2020, 8, e2019EF001389.	2.4	18

LINDSAY BEEVERS

#	Article	IF	CITATIONS
19	Effects of sediment influx on sediment transport characteristics in a river channel. , 2020, , 259-266.		Ο
20	Alexandria Lake Maryut: Integrated Environmental Management. , 2020, , 301-315.		0
21	Replication of ecologically relevant hydrological indicators following a modified covariance approach to hydrological model parameterization. Hydrology and Earth System Sciences, 2019, 23, 3279-3303.	1.9	3
22	Spatio-temporal analysis of compound hydro-hazard extremes across theÂUK. Advances in Water Resources, 2019, 130, 77-90.	1.7	37
23	Are We Doing †Systems' Research? An Assessment of Methods for Climate Change Adaptation to Hydrohazards in a Complex World. Sustainability, 2019, 11, 1163.	1.6	14
24	The Impact of Climate Change on Hydroecological Response in Chalk Streams. Water (Switzerland), 2019, 11, 596.	1.2	9
25	A coupled modelling framework to assess the hydroecological impact of climate change. Environmental Modelling and Software, 2019, 114, 12-28.	1.9	7
26	Future hot-spots for hydro-hazards in Great Britain: a probabilistic assessment. Hydrology and Earth System Sciences, 2018, 22, 5387-5401.	1.9	44
27	A Framework for Assessing Instream Supporting Ecosystem Services Based on Hydroecological Modelling. Water (Switzerland), 2018, 10, 1247.	1.2	5
28	Decisionâ€Making and Flood Risk Uncertainty: Statistical Data Set Analysis for Flood Risk Assessment. Water Resources Research, 2018, 54, 7291-7308.	1.7	19
29	Complexity in hydroecological modelling: <scp>A</scp> comparison of stepwise selection and information theory. River Research and Applications, 2018, 34, 1045-1056.	0.7	6
30	Modelling the impacts of a water trading scheme on freshwater habitats. Ecological Engineering, 2017, 105, 284-295.	1.6	7
31	Macroâ€invertebrate Community Response to Multiâ€annual Hydrological Indicators. River Research and Applications, 2017, 33, 707-717.	0.7	11
32	Environmental Water Regimes and Natural Capital. , 2017, , 151-171.		3
33	Valuing Multiple Benefits, and the Public Perception of SUDS Ponds. Water (Switzerland), 2017, 9, 128.	1.2	25
34	Assessing the Impact of Climate Change and Extreme Value Uncertainty to Extreme Flows across Great Britain. Water (Switzerland), 2017, 9, 103.	1.2	33
35	Using CWA to Understand and Enhance Infrastructure Resilience. , 2017, , 403-418.		0
36	The Mitigation Potential of Buffer Strips for Reservoir Sediment Yields: The Itumbiara Hydroelectric Power Plant in Brazil. Water (Switzerland), 2016, 8, 489.	1.2	7

LINDSAY BEEVERS

#	Article	IF	CITATIONS
37	Applicability of a coastal morphodynamic model for fluvial environments. Environmental Modelling and Software, 2016, 80, 83-99.	1.9	5
38	The interaction of low flow conditions and spawning brown trout (Salmo trutta) habitat availability. Ecological Engineering, 2016, 88, 53-63.	1.6	24
39	A systems approach to flood vulnerability. Civil Engineering and Environmental Systems, 2016, 33, 199-213.	0.4	19
40	Assessing the impact of climate change on extreme flows across Great Britain. , 2016, , 877-883.		0
41	Near-bed turbulence characteristics in unsteady hydrograph flows over mobile and immobile gravel beds. , 2016, , 259-266.		0
42	Variable input parameter influence on river corridor prediction. Water Management, 2015, 168, 199-209.	0.4	2
43	Effects of flow alteration on Appleâ€ring Acacia (<i>Faidherbia albida</i>) stands, Middle Zambezi floodplains, Zimbabwe. Ecohydrology, 2015, 8, 922-934.	1.1	9
44	Quantifying vulnerability of rural communities to flooding in SSA: A contemporary disaster management perspective applied to the Lower Shire Valley, Malawi. International Journal of Disaster Risk Reduction, 2015, 12, 172-187.	1.8	38
45	Variable input parameter influence on river corridor prediction. Water Management, 2015, 168, 199-209.	0.4	Ο
46	Comparison of sediment transport computations using hydrodynamic versus hydrologic models in the Simiyu River in Tanzania. Physics and Chemistry of the Earth, 2013, 61-62, 12-21.	1.2	19
47	The interactions of the flow regime and the terrestrial ecology of the Mana floodplains in the middle Zambezi river basin. Ecohydrology, 2013, 6, 554-566.	1.1	8
48	Parametric and physically based modelling techniques for flood risk and vulnerability assessment: A comparison. Environmental Modelling and Software, 2013, 41, 84-92.	1.9	177
49	Resistance versus resilience approaches in road planning and design in delta areas: Mekong floodplains in Cambodia and Vietnam. Journal of Environmental Planning and Management, 2012, 55, 1289-1310.	2.4	12
50	Economic valuation of benefits and costs associated with the coordinated development and management of the Zambezi river basin. Water Policy, 2012, 14, 490-508.	0.7	32
51	DEALING WITH SEDIMENTATION ISSUES IN SPATE IRRIGATION SYSTEMS. Irrigation and Drainage, 2012, 61, 220-230.	0.8	13
52	Cumulative impacts of road developments in floodplains. Transportation Research, Part D: Transport and Environment, 2012, 17, 398-404.	3.2	17
53	Application of a coastal modelling code in fluvial environments. Environmental Modelling and Software, 2011, 26, 1685-1695.	1.9	34
54	The importance of context in delivering effective EIA: Case studies from East Africa. Environmental Impact Assessment Review, 2011, 31, 286-296.	4.4	52

LINDSAY BEEVERS

#	Article	IF	CITATIONS
55	Restoring a flow regime through the coordinated operation of a multireservoir system: The case of the Zambezi River basin. Water Resources Research, 2010, 46, .	1.7	47
56	WWF Initiatives to Study the Impact of Climate Change on Himalayan High-altitude Wetlands (HAWs). Mountain Research and Development, 2010, 30, 42-52.	0.4	27
57	The doing and un-doing of public participation during environmental impact assessments in Kenya. Impact Assessment and Project Appraisal, 2009, 27, 217-226.	1.0	43
58	Predicting river flows for future climates using an autoregressive multinomial logit model. Water Resources Research, 2008, 44, .	1.7	15
59	Assessing the sustainability of estuarine barrages. , 2007, , 1101-1107.		Ο
60	Assessment of freshwater ecosystem services in the Beas River Basin, Himalayas region, India. Proceedings of the International Association of Hydrological Sciences, 0, 379, 67-72.	1.0	3
61	EURO-CORDEX: A Multi-Model Ensemble Fit for Assessing Future Hydrological Change?. Frontiers in Water, 0, 4, .	1.0	1