Julien Nicolas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3160098/publications.pdf

Version: 2024-02-01

144

all docs

125 17,107 53
papers citations h-index

144

docs citations

h-index g-index

144 21107
times ranked citing authors

14208

128

#	Article	IF	CITATIONS
1	Oneâ€Step Synthesis of Degradable Vinylic Polymerâ€Based Latexes via Aqueous Radical Emulsion Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42
2	Oneâ€Step Synthesis of Degradable Vinylic Polymerâ€Based Latexes via Aqueous Radical Emulsion Polymerization. Angewandte Chemie, 2022, 134, .	2.0	4
3	A Simple Route to Aqueous Suspensions of Degradable Copolymer Nanoparticles Based on Radical Ring-Opening Polymerization-Induced Self-Assembly (rROPISA). Chemistry of Materials, 2022, 34, 1875-1888.	6.7	24
4	Vinyl copolymers with faster hydrolytic degradation than aliphatic polyesters and tunable upper critical solution temperatures. Nature Communications, 2022 , 13 , .	12.8	22
5	(Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules, 2022, 23, 3043-3080.	5.4	24
6	Degradable Polyampholytes from Radical Ring-Opening Copolymerization Enhance Cellular Cryopreservation. ACS Macro Letters, 2022, 11, 889-894.	4.8	12
7	Towards nanoparticles with site-specific degradability by ring-opening copolymerization induced self-assembly in organic medium. Polymer Chemistry, 2021, 12, 594-607.	3.9	23
8	Simulations of the Upper Critical Solution Temperature Behavior of Poly(ornithine- <i>co</i> -citrulline)s Using MARTINI-Based Coarse-Grained Force Fields. Journal of Chemical Theory and Computation, 2021, 17, 4499-4511.	5. 3	2
9	Supramolecular Organization of Polymer Prodrug Nanoparticles Revealed by Coarse-Grained Simulations. Journal of the American Chemical Society, 2021, 143, 17412-17423.	13.7	18
10	Synthesis of poly(Asparagine-co-phenylalanine) copolymers, analogy with thermosensitive poly(acrylamide-co-styrene) copolymers and formation of PEGylated nanoparticles. European Polymer Journal, 2020, 140, 110033.	5.4	2
11	100th Anniversary of Macromolecular Science Viewpoint: Degradable Polymers from Radical Ring-Opening Polymerization: Latest Advances, New Directions, and Ongoing Challenges. ACS Macro Letters, 2020, 9, 1812-1835.	4.8	91
12	DFT-calculation-assisted prediction of the copolymerization between cyclic ketene acetals and traditional vinyl monomers. Polymer Chemistry, 2020, 11, 7159-7169.	3.9	22
13	Hybrid nanoparticle composites. Journal of Materials Chemistry B, 2020, 8, 4713-4714.	5.8	4
14	3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules, 2020, 21, 1968-1994.	5.4	297
15	The crucial role of macromolecular engineering, drug encapsulation and dilution on the thermoresponsiveness of UCST diblock copolymer nanoparticles used for hyperthermia. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 281-290.	4.3	13
16	Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Advanced Drug Delivery Reviews, 2019, 151-152, 130-151.	13.7	78
17	Light sheet fluorescence microscopy versus confocal microscopy: in quest of a suitable tool to assess drug and nanomedicine penetration into multicellular tumor spheroids. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 195-203.	4.3	56
18	Protein-functionalized nanoparticles derived from end-functional polymers and polymer prodrugs for crossing the blood-brain barrier. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 70-82.	4.3	26

#	Article	IF	Citations
19	Drug-Initiated Synthesis of Heterotelechelic Polymer Prodrug Nanoparticles for <i>in Vivo</i> lmaging and Cancer Cell Targeting. Biomacromolecules, 2019, 20, 2464-2476.	5.4	17
20	Radical Ring-Opening Copolymerization-Induced Self-Assembly (rROPISA). Macromolecules, 2019, 52, 3612-3624.	4.8	58
21	Structure-pDNA complexation and structure–cytotoxicity relationships of PEGylated, cationic aminoethyl-based polyacrylates with tunable topologies. Polymer Chemistry, 2019, 10, 1968-1977.	3.9	6
22	From poly(alkyl cyanoacrylate) to squalene as core material for the design of nanomedicines. Journal of Drug Targeting, 2019, 27, 470-501.	4.4	20
23	Heterotelechelic polymer prodrug nanoparticles: Adaptability to different drug combinations and influence of the dual functionalization on the cytotoxicity. Journal of Controlled Release, 2019, 295, 223-236.	9.9	21
24	Degradable Copolymer Nanoparticles from Radical Ring-Opening Copolymerization between Cyclic Ketene Acetals and Vinyl Ethers. Biomacromolecules, 2019, 20, 305-317.	5 . 4	27
25	Thermoresponsive polymer nanocarriers for biomedical applications. Advanced Drug Delivery Reviews, 2019, 138, 167-192.	13.7	256
26	Incomplete copolymer degradation of in situ chemotherapy. Journal of Materials Science: Materials in Medicine, 2018, 29, 25.	3 . 6	3
27	Tunable Degradation of Copolymers Prepared by Nitroxide-Mediated Radical Ring-Opening Polymerization and Point-by-Point Comparison with Traditional Polyesters. Macromolecules, 2018, 51, 724-736.	4.8	41
28	Self-stabilized, hydrophobic or PEGylated paclitaxel polymer prodrug nanoparticles for cancer therapy. Polymer Chemistry, 2018, 9, 687-698.	3.9	23
29	Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer's disease-like transgenic mouse model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 609-618.	3.3	109
30	Telechelic polymers from reversible-deactivation radical polymerization for biomedical applications. Chemical Communications, 2018, 54, 228-240.	4.1	26
31	Drug-Initiated Synthesis of Cladribine-Based Polymer Prodrug Nanoparticles: Biological Evaluation and Structure Activity Relationships. ACS Symposium Series, 2018, , 201-217.	0.5	0
32	Best Practices for New Polymers and Nanoparticulate Systems. Chemistry of Materials, 2018, 30, 6587-6588.	6.7	4
33	Degradable polymer prodrugs with adjustable activity from drug-initiated radical ring-opening copolymerization. Chemical Science, 2018, 9, 8291-8306.	7.4	38
34	A facile route to heterotelechelic polymer prodrug nanoparticles for imaging, drug delivery and combination therapy. Journal of Controlled Release, 2018, 286, 425-438.	9.9	22
35	Radical Ring-Opening Polymerization: Scope, Limitations, and Application to (Bio)Degradable Materials. Chemical Reviews, 2017, 117, 1319-1406.	47.7	254
36	Structure–cytotoxicity relationship of drug-initiated polymer prodrug nanoparticles. Polymer Chemistry, 2017, 8, 5174-5184.	3.9	24

#	Article	IF	CITATIONS
37	A comprehensive kinetic study of the conventional free-radical polymerization of seven-membered cyclic ketene acetals. Polymer Chemistry, 2017, 8, 5139-5147.	3.9	30
38	Fluorescent polymer prodrug nanoparticles with aggregation-induced emission (AIE) properties from nitroxide-mediated polymerization. Chemical Communications, 2017, 53, 4489-4492.	4.1	50
39	Radical Ring-Opening Copolymerization of Cyclic Ketene Acetals and Maleimides Affords Homogeneous Incorporation of Degradable Units. ACS Macro Letters, 2017, 6, 1071-1077.	4.8	63
40	Radical Copolymerization of Vinyl Ethers and Cyclic Ketene Acetals as a Versatile Platform to Design Functional Polyesters. Angewandte Chemie - International Edition, 2017, 56, 16515-16520.	13.8	65
41	Radical Copolymerization of Vinyl Ethers and Cyclic Ketene Acetals as a Versatile Platform to Design Functional Polyesters. Angewandte Chemie, 2017, 129, 16742-16747.	2.0	15
42	Simple Synthesis of Cladribine-Based Anticancer Polymer Prodrug Nanoparticles with Tunable Drug Delivery Properties. Chemistry of Materials, 2016, 28, 6266-6275.	6.7	30
43	Pulmonary Surfactant Protein A-Mediated Enrichment of Surface-Decorated Polymeric Nanoparticles in Alveolar Macrophages. Molecular Pharmaceutics, 2016, 13, 4168-4178.	4.6	25
44	Efficient synthesis of 2-methylene-4-phenyl-1,3-dioxolane, a cyclic ketene acetal for controlling the NMP of methyl methacrylate and conferring tunable degradability. Polymer Chemistry, 2016, 7, 4427-4435.	3.9	43
45	Nitroxide-Mediated Polymerization of Vinyl Chloride at Low Temperature: Kinetic and Computational Studies. Macromolecules, 2016, 49, 490-498.	4.8	34
46	Drug-Initiated Synthesis of Polymer Prodrugs: Combining Simplicity and Efficacy in Drug Delivery. Chemistry of Materials, 2016, 28, 1591-1606.	6.7	86
47	Cyclopentyl methyl ether as a green solvent for reversible-addition fragmentation chain transfer and nitroxide-mediated polymerizations. RSC Advances, 2016, 6, 7495-7503.	3.6	21
48	Lipid prodrug nanocarriers in cancer therapy. Journal of Controlled Release, 2015, 208, 25-41.	9.9	94
49	A ring to rule them all: a cyclic ketene acetal comonomer controls the nitroxide-mediated polymerization of methacrylates and confers tunable degradability. Chemical Communications, 2015, 51, 12847-12850.	4.1	43
50	Solvent selection causes remarkable shifts of the "Ouzo region―for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation. Nanoscale, 2015, 7, 9215-9221.	5.6	57
51	One-Step Synthesis of Azlactone-Functionalized SG1-Based Alkoxyamine for Nitroxide-Mediated Polymerization and Bioconjugation. Macromolecules, 2015, 48, 2087-2097.	4.8	16
52	On the structure–control relationship of amide-functionalized SG1-based alkoxyamines for nitroxide-mediated polymerization and conjugation. Polymer Chemistry, 2015, 6, 5693-5704.	3.9	13
53	Nitroxideâ€Mediated Polymerization of Methacrylic Esters: Insights and Solutions to a Longâ€Standing Problem. Macromolecular Rapid Communications, 2015, 36, 1227-1247.	3.9	53
54	Design attributes of long-circulating polymeric drug delivery vehicles. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 304-317.	4.3	49

#	Article	IF	CITATIONS
55	Degradable vinyl polymers for biomedical applications. Nature Chemistry, 2015, 7, 771-784.	13.6	294
56	The Drug-Initiated Method: A Convenient Approach for the Synthesis of Efficient Polymer Prodrug Nanoparticles. ACS Symposium Series, 2015, , 257-272.	0.5	1
57	Chapter 7. NMP of Methacrylic Esters: How to Circumvent a Long-time Obstacle. RSC Polymer Chemistry Series, 2015, , 305-348.	0.2	2
58	Chapter 9. NMP-derived Materials for Biomedical Applications. RSC Polymer Chemistry Series, 2015, , 383-405.	0.2	0
59	RGD decoration of PEGylated polyester nanocapsules of perfluorooctyl bromide for tumor imaging: Influence of pre or post-functionalization on capsule morphology. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 170-177.	4.3	39
60	Recent trends in the design of anticancer polymer prodrug nanocarriers. Polymer Chemistry, 2014, 5, 1529-1544.	3.9	246
61	Multifunctional squalene-based prodrug nanoparticles for targeted cancer therapy. Chemical Communications, 2014, 50, 5336-5338.	4.1	56
62	In the (Very) Long Run We Are All Dead: Activation and Termination in SET-LRP/SARA-ATRP. ACS Macro Letters, 2014, 3, 643-647.	4.8	40
63	Nitroxideâ€Mediated Radical Ringâ€Opening Copolymerization: Chainâ€End Investigation and Block Copolymer Synthesis. Macromolecular Rapid Communications, 2014, 35, 484-491.	3.9	45
64	Significant Tumor Growth Inhibition from Naturally Occurring Lipid-Containing Polymer Prodrug Nanoparticles Obtained by the Drug-Initiated Method. Chemistry of Materials, 2014, 26, 3606-3609.	6.7	28
65	Precise Engineering of Multifunctional PEGylated Polyester Nanoparticles for Cancer Cell Targeting and Imaging. Chemistry of Materials, 2014, 26, 1834-1847.	6.7	46
66	Living Radical Polymerization: Nitroxide-Mediated Polymerization. , 2014, , 1-16.		0
67	Polymer Prodrug Nanoparticles Based on Naturally Occurring Isoprenoid for Anticancer Therapy. Biomacromolecules, 2013, 14, 2837-2847.	5.4	55
68	Scope and limitations of the nitroxide-mediated radical ring-opening polymerization of cyclic ketene acetals. Polymer Chemistry, 2013, 4, 4776.	3.9	38
69	Solution Phase and Nanoparticular Biosynthetically Inspired Interconnections in the Canthinâ€6â€one βâ€Carboline Series and Study of Phenotypic Properties on <i>C. elegans</i> . European Journal of Organic Chemistry, 2013, 2013, 5821-5828.	2.4	7
70	Nitroxide-mediated polymerization. Progress in Polymer Science, 2013, 38, 63-235.	24.7	1,167
71	Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 2013, 12, 991-1003.	27.5	5,084
72	Degradable and Comb-Like PEG-Based Copolymers by Nitroxide-Mediated Radical Ring-Opening Polymerization. Biomacromolecules, 2013, 14, 3769-3779.	5.4	87

#	Article	IF	Citations
73	Facile Synthesis of Multicompartment Micelles Based on Biocompatible Poly(3â€hydroxyalkanoate). Macromolecular Rapid Communications, 2013, 34, 362-368.	3.9	32
74	Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chemical Society Reviews, 2013, 42, 1147-1235.	38.1	1,104
75	Nanoparticles with Inâ€Vivo Anticancer Activity from Polymer Prodrug Amphiphiles Prepared by Living Radical Polymerization. Angewandte Chemie - International Edition, 2013, 52, 1678-1682.	13.8	83
76	Effect of nanoparticles binding & amp; szlig; amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages. International Journal of Nanomedicine, 2013, 8, 1335.	6.7	11
77	Targeted Delivery Using Biodegradable Polymeric Nanoparticles. , 2012, , 255-288.		6
78	Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chemical Reviews, 2012, 112, 5818-5878.	47.7	1,769
79	Comproportionation versus Disproportionation in the Initiation Step of Cu(0)-Mediated Living Radical Polymerization. Macromolecules, 2012, 45, 7388-7396.	4.8	50
80	PEGylated Nanoparticles Bind to and Alter Amyloid-Beta Peptide Conformation: Toward Engineering of Functional Nanomedicines for Alzheimer's Disease. ACS Nano, 2012, 6, 5897-5908.	14.6	164
81	Near infrared labeling of PLGA for in vivo imaging of nanoparticles. Polymer Chemistry, 2012, 3, 694.	3.9	39
82	Use of Solvent Effects to Improve Control Over Nitroxideâ€Mediated Polymerization of Isoprene. Macromolecular Rapid Communications, 2012, 33, 805-810.	3.9	33
83	Versatile and Efficient Targeting Using a Single Nanoparticulate Platform: Application to Cancer and Alzheimer's Disease. ACS Nano, 2012, 6, 5866-5879.	14.6	127
84	Quantum dot-loaded PEGylated poly(alkyl cyanoacrylate) nanoparticles for in vitro and in vivo imaging. Soft Matter, 2011, 7, 6187.	2.7	23
85	SG1 Nitroxide-Mediated Polymerization of Isoprene: Alkoxyamine Structure/Control Relationship and α,ω–Chain-End Functionalization. Macromolecules, 2011, 44, 9230-9238.	4.8	59
86	First peptide/protein PEGylation with functional polymers designed by nitroxide-mediated polymerization. Polymer Chemistry, 2011, 2, 1523.	3.9	68
87	Simple and efficient copper metal-mediated synthesis of alkoxyamine initiators. Polymer Chemistry, 2011, 2, 1859.	3.9	46
88	Biodegradable Nanoparticles Meet the Bronchial Airway Barrier: How Surface Properties Affect Their Interaction with Mucus and Epithelial Cells. Biomacromolecules, 2011, 12, 4136-4143.	5.4	91
89	Colloidal properties of biodegradable nanoparticles influence interaction with amyloid- \hat{l}^2 peptide. Journal of Biotechnology, 2011, 156, 338-340.	3.8	19
90	Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. International Journal of Nanomedicine, 2011, 6, 2591.	6.7	108

#	Article	IF	Citations
91	Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 521-540.	3.3	240
92	Selegiline-functionalized, PEGylated poly(alkyl cyanoacrylate) nanoparticles: Investigation of interaction with amyloid- \hat{l}^2 peptide and surface reorganization. International Journal of Pharmaceutics, 2011, 416, 453-460.	5.2	25
93	Poly(Alkyl Cyanoacrylate) Nanosystems. Fundamental Biomedical Technologies, 2011, , 225-250.	0.2	7
94	Recent advances in the design of bioconjugates from controlled/living radical polymerization. Polymer Chemistry, 2010, 1, 563.	3.9	209
95	PEGylation and preliminary biocompatibility evaluation of magnetite–silica nanocomposites obtained by high energy ball milling. International Journal of Pharmaceutics, 2010, 401, 103-112.	5.2	28
96	A minimal amount of acrylonitrile turns the nitroxideâ€mediated polymerization of methyl methacrylate into an almost ideal controlled/living system. Journal of Polymer Science Part A, 2010, 48, 34-47.	2.3	119
97	New Method Based on Capillary Electrophoresis with Laser-Induced Fluorescence Detection (CE-LIF) to Monitor Interaction between Nanoparticles and the Amyloid- \hat{l}^2 Peptide. Analytical Chemistry, 2010, 82, 10083-10089.	6.5	50
98	Design of fluorescently tagged poly(alkyl cyanoacrylate) nanoparticles for human brain endothelial cell imaging. Chemical Communications, 2010, 46, 2602.	4.1	44
99	Facile Synthesis of Innocuous Comb-Shaped Polymethacrylates with PEG Side Chains by Nitroxide-Mediated Radical Polymerization in Hydroalcoholic Solutions. Macromolecules, 2010, 43, 9291-9303.	4.8	70
100	Application of thermal analysis to the study of lipidic prodrug incorporation into nanocarriers. Journal of Thermal Analysis and Calorimetry, 2009, 98, 65-71.	3.6	7
101	Synthesis of poly(alkyl cyanoacrylate)â€based colloidal nanomedicines. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 111-127.	6.1	91
102	Comprehensive Modeling Study of Nitroxide-Mediated Controlled/Living Radical Copolymerization of Methyl Methacrylate with a Small Amount of Styrene. Macromolecules, 2009, 42, 4470-4478.	4.8	86
103	Formulation of Didanosine Prodrugs into PEGylated Poly(alkyl cyanoacrylate) Nanoparticles and Uptake by Brain Endothelial Cells. Journal of Nanoneuroscience, 2009, 1, 174-183.	0.5	3
104	βâ€Hydrogen transfer from poly(methyl methacrylate) propagating radicals to the nitroxide SG1: Analysis of the chainâ€end and determination of the rate constant. Journal of Polymer Science Part A, 2008, 46, 6333-6345.	2.3	89
105	Novel PEGylated Nanoassemblies Made of Selfâ€Assembled Squalenoyl Nucleoside Analogues. Advanced Functional Materials, 2008, 18, 3715-3725.	14.9	67
106	Separation of complex branched polymers by size-exclusion chromatography probed with multiple detection. Journal of Chromatography A, 2008, 1190, 215-223.	3.7	77
107	Fluorescently Labeled Protein-Polymer Bioconjugates Using Protein-Derived Macroinitiators from Living Radical Polymerization. ACS Symposium Series, 2008, , 78-94.	0.5	4
108	Synthesis of Highly Functionalized Poly(alkyl cyanoacrylate) Nanoparticles by Means of Click Chemistry. Macromolecules, 2008, 41, 8418-8428.	4.8	40

#	Article	IF	Citations
109	Comblike Polymethacrylates with Poly(ethylene glycol) Side Chains via Nitroxide-Mediated Controlled Free-Radical Polymerization. Macromolecules, 2008, 41, 3758-3761.	4.8	58
110	Site-Directed Conjugation of "Clicked―Glycopolymers To Form Glycoprotein Mimics:  Binding to Mammalian Lectin and Induction of Immunological Function. Journal of the American Chemical Society, 2007, 129, 15156-15163.	13.7	281
111	Bioconjugation onto biological surfaces with fluorescently labeled polymers. Chemical Communications, 2007, , 1722.	4.1	35
112	Living Radical Polymerization as a Tool for the Synthesis of Polymer-Protein/Peptide Bioconjugates. Macromolecular Rapid Communications, 2007, 28, 1083-1111.	3.9	305
113	Water-soluble SG1-based alkoxyamines: A breakthrough in controlled/living free-radical polymerization in aqueous dispersed media. Polymer, 2007, 48, 5813-5833.	3.8	130
114	Nanostructured latex particles synthesized by nitroxide-mediated controlled/living free-radical polymerization in emulsion. Polymer, 2007, 48, 7029-7040.	3.8	73
115	Aqueous suspension of amphiphilic diblock copolymer nanoparticles prepared in situ from a water-soluble poly(sodium acrylate) alkoxyamine macroinitiator. Soft Matter, 2006, 2, 223.	2.7	102
116	Living Character of Polymer Chains Prepared via Nitroxide-Mediated Controlled Free-Radical Polymerization of Methyl Methacrylate in the Presence of a Small Amount of Styrene at Low Temperature. Macromolecules, 2006, 39, 8274-8282.	4.8	212
117	Fluorescently tagged polymer bioconjugates from protein derived macroinitiators. Chemical Communications, 2006, , 4697.	4.1	129
118	Multistep and semibatch nitroxide-mediated controlled free-radical emulsion polymerization: A significant step toward conceivable industrial processes. Journal of Polymer Science Part A, 2006, 44, 4142-4153.	2.3	61
119	Surfactant-free synthesis of amphiphilic diblock copolymer nanoparticles via nitroxide-mediated emulsion polymerization. Chemical Communications, 2005, , 614.	4.1	136
120	Miniemulsion Polymerization of Styrene Using a pH-Responsive Cationic Diblock Macromonomer and Its Nonreactive Diblock Copolymer Counterpart as Stabilizers. Langmuir, 2005, 21, 6726-6733.	3.5	35
121	Nitroxide-Mediated Controlled Free-Radical Emulsion Polymerization Using a Difunctional Water-Soluble Alkoxyamine Initiator. Toward the Control of Particle Size, Particle Size Distribution, and the Synthesis of Triblock Copolymers. Macromolecules, 2005, 38, 9963-9973.	4.8	120
122	Theoretical Expression of the Average Activationâ [^] Deactivation Equilibrium Constant in Controlled/Living Free-Radical Copolymerization Operating via Reversible Termination. Application to a Strongly Improved Control in Nitroxide-Mediated Polymerization of Methyl Methacrylate. Macromolecules, 2005, 38, 5485-5492.	4.8	226
123	Nitroxide-Mediated Controlled Free-Radical Emulsion Polymerization of Styrene andn-Butyl Acrylate with a Water-Soluble Alkoxyamine as Initiator. Angewandte Chemie - International Edition, 2004, 43, 6186-6189.	13.8	136
124	Novel SG1-Based Water-Soluble Alkoxyamine for Nitroxide-Mediated Controlled Free-Radical Polymerization of Styrene and n-Butyl Acrylate in Miniemulsion. Macromolecules, 2004, 37, 4453-4463.	4.8	122
125	Kinetic study of the nitroxide-mediated controlled free-radical polymerization ofn-butyl acrylate in aqueous miniemulsions. Journal of Polymer Science Part A, 2002, 40, 4410-4420.	2.3	67