Virginia Walbot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3159927/publications.pdf

Version: 2024-02-01

197 papers

15,123 citations

62 h-index 24511 114 g-index

206 all docs

206 docs citations

206 times ranked 12533 citing authors

#	Article	IF	CITATIONS
1	A cascade of bHLH-regulated pathways programs maize anther development. Plant Cell, 2022, 34, 1207-1225.	3.1	17
2	Gametophyte genome activation occurs at pollen mitosis I in maize. Science, 2022, 375, 424-429.	6.0	29
3	24â€nt phasiRNAs move from tapetal to meiotic cells in maize anthers. New Phytologist, 2022, 235, 488-501.	3.5	15
4	CHH DNA methylation increases at 24â€∢i>PHAS loci depend on 24â€nt phased small interfering RNAs in maize meiotic anthers. New Phytologist, 2021, 229, 2984-2997.	3.5	29
5	Transgenerational conditioned male fertility of HD-ZIP IV transcription factor mutant ocl4: impact on 21-nt phasiRNA accumulation in pre-meiotic maize anthers. Plant Reproduction, 2021, 34, 117-129.	1.3	16
6	Understanding Ustilago maydis Infection of Multiple Maize Organs. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT/0	Overlock 1	0 Т <u>f</u> 50 542 Т
7	Crowdsourcing biocuration: The Community Assessment of Community Annotation with Ontologies (CACAO). PLoS Computational Biology, 2021, 17, e1009463.	1.5	7
8	Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nature Communications, 2020, 11, 2912.	5.8	83
9	Defining the developmental program leading to meiosis in maize. Science, 2019, 364, 52-56.	6.0	140
10	Sugar Partitioning between <i>Ustilago maydis</i> and Its Host <i>Zea mays</i> L during Infection. Plant Physiology, 2019, 179, 1373-1385.	2.3	23
11	Pre-meiotic anther development. Current Topics in Developmental Biology, 2019, 131, 239-256.	1.0	19
12	Pathogen Trojan Horse Delivers Bioactive Host Protein to Alter Maize Anther Cell Behavior in Situ. Plant Cell, 2018, 30, 528-542.	3.1	23
13	How to make a tumour: cell type specific dissection of <i>Ustilago maydisâ€</i> induced tumour development in maize leaves. New Phytologist, 2018, 217, 1681-1695.	3.5	55
14	Application of the pathogen Trojan horse approach in maize (Zea mays). Plant Signaling and Behavior, 2018, 13, e1547575.	1.2	4
15	MS23, a master basic helix-loop-helix factor, regulates the specification and development of tapetum in maize. Development (Cambridge), 2017, 144, 163-172.	1.2	71
16	An <i>Agrobacterium</i> â€delivered <scp>CRISPR</scp> /Cas9 system for highâ€frequency targeted mutagenesis in maize. Plant Biotechnology Journal, 2017, 15, 257-268.	4.1	300
17	A framework for evaluating developmental defects at the cellular level: An example from ten maize anther mutants using morphological and molecular data. Developmental Biology, 2016, 419, 26-40.	0.9	8
18	Advancing Crop Transformation in the Era of Genome Editing. Plant Cell, 2016, 28, tpc.00196.2016.	3.1	429

#	Article	IF	CITATIONS
19	Pre-Meiotic Anther Development: Cell Fate Specification and Differentiation. Annual Review of Plant Biology, 2016, 67, 365-395.	8.6	78
20	Molecular Genetics of Corn. Agronomy, 2015, , 389-429.	0.2	7
21	Spatiotemporally dynamic, cell-type–dependent premeiotic and meiotic phasiRNAs in maize anthers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3146-3151.	3.3	310
22	Evolution, functions, and mysteries of plant ARGONAUTE proteins. Current Opinion in Plant Biology, 2015, 27, 84-90.	3.5	164
23	A Secreted Effector Protein of <i>Ustilago maydis</i> Guides Maize Leaf Cells to Form Tumors. Plant Cell, 2015, 27, 1332-1351.	3.1	143
24	Chloroplasts in anther endothecium of <i>Zea mays</i> (Poaceae). American Journal of Botany, 2015, 102, 1931-1937.	0.8	19
25	Transcriptomes and Proteomes Define Gene Expression Progression in Pre-meiotic Maize Anthers. G3: Genes, Genomes, Genetics, 2014, 4, 993-1010.	0.8	45
26	Sequencing and de novo assembly of a Dahlia hybrid cultivar transcriptome. Frontiers in Plant Science, 2014, 5, 340.	1.7	8
27	Unresolved issues in pre-meiotic anther development. Frontiers in Plant Science, 2014, 5, 347.	1.7	26
28	Maize germinal cell initials accommodate hypoxia and precociously express meiotic genes. Plant Journal, 2014, 77, 639-652.	2.8	47
29	Virulence of the maize smut <i> <scp>U</scp>stilago maydis</i> is shaped by organâ€specific effectors. Molecular Plant Pathology, 2014, 15, 780-789.	2.0	78
30	Domesticating the beast. BMC Biology, 2013, 11, 35.	1.7	1
31	Open questions: Reflections on plant development and genetics. BMC Biology, 2013, 11, 25.	1.7	3
32	Maize Male sterile 8 (Ms8), a putative \hat{l}^2 -1,3-galactosyltransferase, modulates cell division, expansion, and differentiation during early maize anther development. Plant Reproduction, 2013, 26, 329-338.	1.3	50
33	UV-B Radiation Induces Mu Element Somatic Transposition in Maize. Molecular Plant, 2013, 6, 2004-2007.	3.9	10
34	Cytological Characterization and Allelism Testing of Anther Developmental Mutants Identified in a Screen of Maize Male Sterile Lines. G3: Genes, Genomes, Genetics, 2013, 3, 231-249.	0.8	50
35	Regulation of cell divisions and differentiation by <scp>MALE STERILITY</scp> 32 is required for anther development in maize. Plant Journal, 2013, 76, 592-602.	2.8	68
36	<i>Ustilago maydis</i> reprograms cell proliferation in maize anthers. Plant Journal, 2013, 75, 903-914.	2.8	31

#	Article	IF	CITATIONS
37	Using MuDR/Mu Transposons in Directed Tagging Strategies. Methods in Molecular Biology, 2013, 1057, 143-155.	0.4	5
38	Distinguishing Variable Phenotypes from Variegation Caused by Transposon Activities. Methods in Molecular Biology, 2013, 1057, 11-20.	0.4	0
39	Mu killer-Mediated and Spontaneous Silencing of Zea mays Mutator Family Transposable Elements Define Distinctive Paths of Epigenetic Inactivation. Frontiers in Plant Science, 2012, 3, 212.	1.7	3
40	Maize <i>multiple archesporial cells 1</i> (<i>mac1</i>), an ortholog of rice <i>TDL1A</i> , modulates cell proliferation and identity in early anther development. Development (Cambridge), 2012, 139, 2594-2603.	1.2	102
41	What determines cell size?. BMC Biology, 2012, 10, 101.	1.7	196
42	Hypoxia Triggers Meiotic Fate Acquisition in Maize. Science, 2012, 337, 345-348.	6.0	179
43	A low molecular weight proteome comparison of fertile and <i>male sterile 8</i> anthers of <i>Zea mays</i> . Plant Biotechnology Journal, 2012, 10, 925-935.	4.1	18
44	Emergence and patterning of the five cell types of the Zea mays anther locule. Developmental Biology, 2011, 350, 32-49.	0.9	81
45	Rapid Maize Leaf and Immature Ear Responses to UV-B Radiation. Frontiers in Plant Science, 2011, 2, 33.	1.7	12
46	GRFT – Genetic Records Family Tree Web Applet. Frontiers in Genetics, 2011, 2, 14.	1.1	0
47	Maize csmd1 exhibits pre-meiotic somatic and post-meiotic microspore and somatic defects but sustains anther growth. Sexual Plant Reproduction, 2011, 24, 297-306.	2.2	11
48	Global transcriptome analysis of two ameiotic1 alleles in maize anthers: defining steps in meiotic entry and progression through prophase I. BMC Plant Biology, 2011, 11, 120.	1.6	29
49	How plants cope with temperature stress. BMC Biology, 2011, 9, 79.	1.7	14
50	Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize. BMC Genomics, 2011, 12, 321.	1.2	65
51	Transcriptomic, proteomic and metabolomic analysis of maize responses to UV-B. Plant Signaling and Behavior, 2011, 6, 1146-1153.	1.2	20
52	UV-B signaling in maize. Plant Signaling and Behavior, 2011, 6, 1926-1931.	1.2	10
53	Maize host requirements for Ustilago maydis tumor induction. Sexual Plant Reproduction, 2010, 23, 1-13.	2.2	29
54	The male sterile 8 mutation of maize disrupts the temporal progression of the transcriptome and results in the mis-regulation of metabolic functions. Plant Journal, 2010, 63, 939-951.	2.8	51

#	Article	IF	CITATIONS
55	Maize Tumors Caused by <i>Ustilago maydis</i> Require Organ-Specific Genes in Host and Pathogen. Science, 2010, 328, 89-92.	6.0	183
56	Mutator transposon activation after UV-B involves chromatin remodeling. Epigenetics, 2010, 5, 352-363.	1.3	31
57	Sequencing, Mapping, and Analysis of 27,455 Maize Full-Length cDNAs. PLoS Genetics, 2009, 5, e1000740.	1.5	145
58	Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Research, 2009, 19, 1429-1440.	2.4	283
59	Are we training pit bulls to review our manuscripts?. Journal of Biology, 2009, 8, 24.	2.7	29
60	Mutator transposon activity reprograms the transcriptomes and proteomes of developing maize anthers. Plant Journal, 2009, 59, 622-633.	2.8	34
61	Nonradioactive Genomic DNA Blots for Detection of Low Abundant Sequences in Transgenic Maize. Methods in Molecular Biology, 2009, 526, 113-122.	0.4	3
62	10 Reasons to be Tantalized by the B73 Maize Genome. PLoS Genetics, 2009, 5, e1000723.	1.5	25
63	Distinctive transcriptome responses to adverse environmental conditions in <i>Zea mays</i> L Plant Biotechnology Journal, 2008, 6, 782-798.	4.1	67
64	Male reproductive development: gene expression profiling of maize anther and pollen ontogeny. Genome Biology, 2008, 9, R181.	13.9	101
65	Maize lines expressing RNAi to chromatin remodeling factors are similarly hypersensitive to UV-B radiation but exhibit distinct transcriptome responses. Epigenetics, 2008, 3, 216-229.	1.3	22
66	Histone Acetylation and Chromatin Remodeling Are Required for UV-B–Dependent Transcriptional Activation of Regulated Genes in Maize. Plant Cell, 2008, 20, 827-842.	3.1	80
67	Translational Genomics for Bioenergy Production from Fuelstock Grasses: Maize as the Model Species. Plant Cell, 2007, 19, 2091-2094.	3.1	57
68	Reply: Specific Reasons to Favor Maize in the U.S Plant Cell, 2007, 19, 2973-2973.	3.1	0
69	Epigenetic silencing and unstable inheritance of MuDR activity monitored at four bz2-mu alleles in maize (Zea mays L.). Genes and Genetic Systems, 2007, 82, 387-401.	0.2	7
70	Transcriptome profiling of maize anthers using genetic ablation to analyze pre-meiotic and tapetal cell types. Plant Journal, 2007, 50, 637-648.	2.8	55
71	Coordinated regulation of maize genes during increasing exposure to ultraviolet radiation: identification of ultraviolet-responsive genes, functional processes and associated potential promoter motifs. Plant Biotechnology Journal, 2007, 5, 677-695.	4.1	19
72	Comparative profiling of the sense and antisense transcriptome of maize lines. Genome Biology, 2006, 7, R22.	13.9	75

#	Article	IF	CITATIONS
73	Genetic diversity contribution to errors in short oligonucleotide microarray analysis. Plant Biotechnology Journal, 2006, 4, 060615010054001-???.	4.1	26
74	Genome-wide analysis of high-altitude maize and gene knockdown stocks implicates chromatin remodeling proteins in response to UV-B. Plant Journal, 2006, 46, 613-627.	2.8	78
75	Differential accumulation of maysin and rhamnosylisoorientin in leaves of high-altitude landraces of maize after UV-B exposure. Plant, Cell and Environment, 2005, 28, 788-799.	2.8	97
76	Analysis of Leaf Proteome after UV-B Irradiation in Maize Lines Differing in Sensitivity. Molecular and Cellular Proteomics, 2005, 4, 1673-1685.	2.5	68
77	OBPC Symposium: Maize 2004 & beyond-regulation of the MuDR/Mu transposable elements of maize and their practical uses. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 374-377.	0.9	1
78	Crosslinking of Ribosomal Proteins to RNA in Maize Ribosomes by UV-B and Its Effects on Translation. Plant Physiology, 2004, 136, 3319-3332.	2.3	73
79	Genome-wide mutagenesis of Zea mays L. using RescueMu transposons. Genome Biology, 2004, 5, R82.	13.9	66
80	Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues. Genome Biology, 2004, 5, R16.	13.9	130
81	A Multidrug Resistance–Associated Protein Involved in Anthocyanin Transport in Zea mays. Plant Cell, 2004, 16, 1812-1826.	3.1	380
82	Post-transcriptional regulation of expression of the Bronze2 gene of Zea mays L Plant Molecular Biology, 2003, 53, 75-86.	2.0	30
83	Progress in maize gene discovery: a project update. Functional and Integrative Genomics, 2003, 3, 25-32.	1.4	38
84	Initiation of silencing of maize MuDR/Mu transposable elements. Plant Journal, 2003, 33, 1013-1025.	2.8	43
85	Unique features of the plant life cycle and their consequences. Nature Reviews Genetics, 2003, 4, 369-379.	7.7	158
86	Deletion Derivatives of the MuDR Regulatory Transposon of Maize Encode Antisense Transcripts but Are Not Dominant-Negative Regulators of Mutator Activities. Plant Cell, 2003, 15, 2430-2447.	3.1	11
87	Gene Expression Profiling in Response to Ultraviolet Radiation in Maize Genotypes with Varying Flavonoid Content. Plant Physiology, 2003, 132, 1739-1754.	2.3	228
88	ZmDB, an integrated database for maize genome research. Nucleic Acids Research, 2003, 31, 244-247.	6.5	33
89	Comparison of RNA Expression Profiles Based on Maize Expressed Sequence Tag Frequency Analysis and Micro-Array Hybridization. Plant Physiology, 2002, 128, 896-910.	2.3	96
90	Gene-expression profile comparisons distinguish seven organs of maize. Genome Biology, 2002, 3, research0045.1.	13.9	32

#	Article	IF	Citations
91	Comparative genomics of Arabidopsis and maize: prospects and limitations. Genome Biology, 2002, 3, reviews1005.1.	13.9	39
92	Subcellular localization of MURA and MURB proteins encoded by the maize MuDR transposon. Plant Molecular Biology, 2002, 50, 599-611.	2.0	18
93	Chapter Fourteen Models for vacuolar sequestration of anthocyanins. Recent Advances in Phytochemistry, 2001, 35, 297-312.	0.5	16
94	Chapter One Genomics: New tools to analyze genetic and biochemical diversity. Recent Advances in Phytochemistry, 2001, 35, 1-14.	0.5	0
95	Computational methods for gene annotation: the Arabidopsis genome. Current Opinion in Biotechnology, 2001, 12, 126-130.	3.3	22
96	The <i>MuDR</i> transposon terminal inverted repeat contains a complex plant promoter directing distinct somatic and germinal programs. Plant Journal, 2001, 25, 79-91.	2.8	7
97	Expression and Post-Transcriptional Regulation of Maize Transposable Element MuDR and Its Derivatives. Plant Cell, 2001, 13, 553-570.	3.1	58
98	Somatic and Germinal Mobility of the RescueMu Transposon in Transgenic Maize. Plant Cell, 2001, 13, 1587.	3.1	0
99	Imprinting of R-r, paramutation of B-I and Pl, and epigenetic silencing of MuDR/Mu transposons in Zea mays L. are coordinately affected by inbred background. Genetical Research, 2001, 77, 219-26.	0.3	11
100	The MuDR transposon terminal inverted repeat contains a complex plant promoter directing distinct somatic and germinal programs. Plant Journal, 2001, 25, 79-91.	2.8	46
101	Somatic and Germinal Mobility of the <i>RescueMu</i> Transposon in Transgenic Maize. Plant Cell, 2001, 13, 1587-1608.	3.1	48
102	Somatic and Germinal Mobility of the RescueMu Transposon in Transgenic Maize. Plant Cell, 2001, 13, 1587-1608.	3.1	60
103	A green chapter in the book of life. Nature, 2000, 408, 794-795.	13.7	40
104	Saturation mutagenesis using maize transposons. Current Opinion in Plant Biology, 2000, 3, 103-107.	3.5	127
105	Plant glutathione S -transferases: enzymes with multiple functions in sickness and in health. Trends in Plant Science, 2000, 5, 193-198.	4.3	827
106	The Late Developmental Pattern of Mu Transposon Excision Is Conferred by a Cauliflower Mosaic Virus 35S–Driven MURA cDNA in Transgenic Maize. Plant Cell, 2000, 12, 5-21.	3.1	59
107	AN9, a Petunia Glutathione S-Transferase Required for Anthocyanin Sequestration, Is a Flavonoid-Binding Protein. Plant Physiology, 2000, 123, 1561-1570.	2.3	366
108	UV-B damage amplified by transposons in maize. Nature, 1999, 397, 398-399.	13.7	73

#	Article	IF	CITATIONS
109	Test of the combinatorial model of intron recognition in a native maize gene. Plant Molecular Biology, 1999, 41, 637-644.	2.0	15
110	Genes, Genomes, Genomics. What Can Plant Biologists Expect from the 1998 National Science Foundation Plant Genome Research Program?1. Plant Physiology, 1999, 119, 1151-1156.	2.3	36
111	U-richness is a defining feature of plant introns and may function as an intron recognition signal in maize. Plant Molecular Biology, 1998, 36, 573-583.	2.0	65
112	Functional Complementation of Anthocyanin Sequestration in the Vacuole by Widely Divergent Glutathione S-Transferases. Plant Cell, 1998, 10, 1135-1149.	3.1	391
113	Prediction of splice sites in plant pre-mRNA from sequence properties. Journal of Molecular Biology, 1998, 276, 85-104.	2.0	28
114	Functional Complementation of Anthocyanin Sequestration in the Vacuole by Widely Divergent Glutathione S-Transferases. Plant Cell, 1998, 10, 1135.	3.1	37
115	Transcriptionally Active MuDR, the Regulatory Element of the Mutator Transposable Element Family of Zea mays, Is Present in Some Accessions of the Mexican land race Zapalote chico. Genetics, 1998, 149, 329-346.	1.2	14
116	An Arabidopsis photolyase mutant is hypersensitive to ultraviolet-B radiation. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 328-332.	3.3	178
117	Sense and antisense transcripts of the maize MuDR regulatory transposon localized by in situ hybridization. Plant Molecular Biology, 1997, 33, 23-36.	2.0	28
118	A combinatorial role for exon, intron and splice site sequences in splicing in maize. Plant Journal, 1997, 11, 1253-1263.	2.8	39
119	Vacuolar uptake of the phytoalexin medicarpin by the glutathione conjugate pump. Phytochemistry, 1997, 45, 689-693.	1.4	81
120	Sources and consequences of phenotypic and genotypic plasticity in flowering plants. Trends in Plant Science, 1996, 1, 27-32.	4.3	88
121	Structure and regulation of the maize Bronze2 promoter. Plant Molecular Biology, 1996, 32, 599-609.	2.0	27
122	Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis. Critical Reviews in Plant Sciences, 1996, 15, 525-557.	2.7	179
123	A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature, 1995, 375, 397-400.	13.7	604
124	Transient Expression Analysis in Plants Using Firefly Luciferase Reporter Gene., 1995,, 139-156.		2
125	Sequence similarity of putative transposases links the maizeMutatorautonomous element and a group of bacterial insertion sequences. Nucleic Acids Research, 1994, 22, 2634-2636.	6.5	107
126	In vivo analysis of intron processing using splicing-dependent reporter gene assays. Plant Molecular Biology, 1994, 26, 1785-1795.	2.0	21

#	Article	IF	CITATIONS
127	Addition of A- and U-rich sequence increases the splicing efficiency of a deleted form of a maize intron. Plant Molecular Biology, 1994, 24, 449-463.	2.0	65
128	Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta, 1994, 194, 541-549.	1.6	550
129	Nuclear Pre-mRna Processing in Higher Plants. Progress in Molecular Biology and Translational Science, 1994, 47, 149-193.	1.9	75
130	The TTG Gene Is Required to Specify Epidermal Cell Fate and Cell Patterning in the Arabidopsis Root. Developmental Biology, 1994, 166, 740-754.	0.9	486
131	Transcription of the gene coding for subunit 9 of ATP synthase in rice mitochondria. Plant Molecular Biology, 1993, 22, 899-905.	2.0	7
132	Organization of a 117-kb circular mitochondrial chromosome in IR36 rice. Current Genetics, 1993, 23, 248-254.	0.8	24
133	A simple and sensitive antibody-based method to measure UV-induced DNA damage inZea mays. Plant Molecular Biology Reporter, 1993, 11, 230-236.	1.0	26
134	Insertion of non-intron sequence into maize introns interferes with splicing. Nucleic Acids Research, 1992, 20, 5181-5187.	6.5	16
135	Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation. Nucleic Acids Research, 1992, 20, 4631-4638.	6.5	231
136	[35] Transient expression analysis in plants using firefly luciferase reporter gene. Methods in Enzymology, 1992, 216, 397-414.	0.4	143
137	Bronze-2 Gene Expression and Intron Splicing Patterns in Cells and Tissues of Zea mays L Plant Physiology, 1992, 100, 464-471.	2.3	41
138	Regulated transcription of the maize Bronze-2 promoter in electroporated protoplasts requires the C1 and R gene products. Molecular Genetics and Genomics, 1992, 233, 379-387.	2.4	64
139	Reactivation of Mutator transposable elements of maize by ultraviolet light. Molecular Genetics and Genomics, 1992, 234, 353-360.	2.4	55
140	Structure and expression of the rice mitochondrial apocytochrome b gene (cob-1) and pseudogene (cob-2). Current Genetics, 1992, 22, 463-470.	0.8	35
141	Co-transcription of orf25 and coxlll in rice mitochondria. Current Genetics, 1992, 21, 507-513.	0.8	33
142	Expression of ORF1 of the linear 2.3 kg plasmid of maize mitochondria: product localization and similarities to the 130 kDa protein encoded by the S2 episome. Current Genetics, 1992, 22, 61-67.	0.8	10
143	Developmental regulation of excision timing of Mutator transposons of maize: Comparison of standard lines and an early excision bzl::Mu1 line. Genesis, 1992, 13, 376-386.	3.1	5
144	Germinal and somatic products of Mu1 excision from the Bronze-1 gene of Zea mays. Molecular Genetics and Genomics, 1991, 227, 267-76.	2.4	36

#	Article	IF	Citations
145	Molecular analysis of the loss of somatic instability in the bz2::mu1 allele of maize. Molecular Genetics and Genomics, 1991, 229, 147-151.	2.4	31
146	Post-transcriptional regulation in higher eukaryotes: The role of the reporter gene in controlling expression. Molecular Genetics and Genomics, 1991, 228, 258-264.	2.4	95
147	Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Molecular Genetics and Genomics, 1991, 225, 81-93.	2.4	173
148	Transient Gene Expression in Protoplasts of Phaseolus vulgaris Isolated from a Cell Suspension Culture. Plant Physiology, 1991, 95, 968-972.	2.3	59
149	The Mutator Transposable Element Family of Maize. , 1991, 13, 1-37.		39
150	DNA methylation in the Alcohol dehydrogenase-1 gene of maize. Plant Molecular Biology, 1990, 15, 121-125.	2.0	25
151	Sequence of the F O -atpase proteolipid (atp9) gene from rice mitochondria. Nucleic Acids Research, 1990, 18, 370-370.	6.5	24
152	Bronze-2 Gene of Maize: Reconstruction of a Wild-Type Allele and Analysis of Transcription and Splicing. Plant Cell, 1990, 2, 1039.	3.1	26
153	Sequence of the rice mitochondrial gene for cytochrome oxidase subunit 3. Nucleic Acids Research, 1990, 18, 371-371.	6.5	16
154	Sequence of the rice mitochondrial gene for apocytochrome b. Nucleic Acids Research, 1990, 18, 372-372.	6.5	18
155	Structural analysis of mature and dicistronic transcripts from the 18 S and 5 S ribosomal RNA genes of maize mitochondria. Journal of Molecular Biology, 1990, 213, 633-649.	2.0	27
156	Effects of Cold-Treatment on Protein Synthesis and mRNA Levels in Rice Leaves. Plant Physiology, 1989, 91, 930-938.	2.3	138
157	Integrated R2 sequence in mitochondria of fertile B37N maize encodes and expresses a 130 kD polypeptide similar to that encoded by the S2 episome of S-type male sterile plants. Nucleic Acids Research, 1989, 17, 405-422.	6.5	7
158	Developmental and genetic aspects of Mutator excision in maize. Genesis, 1989, 10, 520-531.	3.1	34
159	Transient gene expression after electroporation of protoplasts derived from embryogenic maize callus. Plant Cell Reports, 1989, 8, 144-147.	2.8	21
160	Identification in maize mitochondrial 26S rRNA of a short $5\hat{a}\in^2$ -end sequence possibly involved in transcription initiation and processing. Current Genetics, 1989, 15, 207-212.	0.8	40
161	Visualizing mRNA Expression in Plant Protoplasts: Factors Influencing Efficient mRNA Uptake and Translation. Plant Cell, 1989, 1, 301.	3.1	50
162	Sequence analysis of three fragments of maize nuclear DNA which replicate autonomously in yeast. Plant Molecular Biology, 1988, 11, 173-182.	2.0	7

#	Article	IF	CITATIONS
163	Reactivation of the Mutator transposable element system following gamma irradiation of seed. Molecular Genetics and Genomics, 1988, 212, 259-264.	2.4	49
164	Regulation of Mu element copy number in maize lines with an active or inactive Mutator transposable element system. Molecular Genetics and Genomics, 1988, 211, 27-34.	2.4	105
165	RNA processing and multiple transcription initiation sites result in transcript size heterogeneity in maize mitochondria. Molecular Genetics and Genomics, 1988, 211, 373-380.	2.4	116
166	An S1 episomal gene of maize mitochondria is expressed in male sterile and fertile plants of the S-type cytoplasm. Molecular Genetics and Genomics, 1988, 211, 386-392.	2.4	20
167	The ribosomal fraction mediates the translational enhancement associated with the 5′-leader of tobacco mosaic virus. Nucleic Acids Research, 1988, 16, 8675-8694.	6.5	29
168	PHENOTYPES MEDIATED BY THE IOJAP GENOTYPE IN MAIZE. American Journal of Botany, 1988, 75, 634-644.	0.8	29
169	Regulation of Mutator Activities in Maize. , 1988, 47, 121-135.		21
170	PHENOTYPES MEDIATED BY THE IOJAP GENOTYPE IN MAIZE. , 1988, 75, 634.		12
171	[21] Electroporation of DNA and RNA into plant protoplasts. Methods in Enzymology, 1987, , 351-366.	0.4	110
172	Isolation and Characterization of a 1.7-kb Transposable Element from a Mutator Line of Maize. Genetics, 1987, 117, 297-307.	1.2	75
173	Cloning of a Mutable <i>bz2</i> Allele of Maize by Transposon Tagging and Differential Hybridization. Genetics, 1987, 117, 771-776.	1.2	110
174	DNA synthesis in purified maize mitochondria. Current Genetics, 1986, 10, 631-637.	0.8	21
175	Cloning and characterization of a linear 2.3 kb mitochondrial plasmid of maize. Molecular Genetics and Genomics, 1986, 205, 206-212.	2.4	28
176	Stable transformation of maize after gene transfer by electroporation. Nature, 1986, 319, 791-793.	13.7	654
177	Properties of Mutable Alleles Recovered from Mutator Stocks of Zea Mays L Stadler Genetics Symposia Series, 1986, , 115-142.	0.0	13
178	MAIZE MITOCHONDRIAL PLASMID S-1 SEQUENCES SHARE HOMOLOGY WITH CHLOROPLAST GENE <i>psbA</i> . Genetics, 1986, 113, 469-482.	1.2	40
179	EVALUATING QUANTITATIVE VARIATION IN THE GENOME OF <i>ZEA MAYS</i> . Genetics, 1986, 113, 1009-1019.	1.2	94
180	STABLE NON-MUTATOR STOCKS OF MAIZE HAVE SEQUENCES HOMOLOGOUS TO THE Mul TRANSPOSABLE ELEMENT. Genetics, 1986, 114, 1007-1021.	1.2	101

#	Article	IF	CITATIONS
181	INHERITANCE OF MUTATOR ACTIVITY IN <i>ZEA MAYS</i> AS ASSAYED BY SOMATIC INSTABILITY OF THE <i>bz2-mu1</i> ALLELE. Genetics, 1986, 114, 1293-1312.	1.2	72
182	On the life strategies of plants and animals. Trends in Genetics, 1985, 1, 165-169.	2.9	118
183	Molecular analysis of mitochondria from a fertility restorer line of maize. Plant Molecular Biology, 1985, 4, 247-252.	2.0	7
184	Evaluation of genomic variability at the nucleic acid level. Plant Molecular Biology Reporter, 1983, 1, 9-16.	1.0	44
185	The plasticity of the plant genomeâ€"Is it a requirement for success?. Plant Molecular Biology Reporter, 1983, 1, 3-11.	1.0	128
186	Suggestion for efficient recovery of visible mutants. Plant Molecular Biology Reporter, 1983, 1, 30-31.	1.0	0
187	PLASTID DEVELOPMENT IN IOJAP―AND CHLOROPLAST MUTATORâ€AFFECTED MAIZE PLANTS. American Journal of Botany, 1983, 70, 940-950.	0.8	32
188	PLASTID DEVELOPMENT IN IOJAP- AND CHLOROPLAST MUTATOR-AFFECTED MAIZE PLANTS. , 1983, 70, 940.		10
189	Disease lesion mimics in maize. Developmental Biology, 1982, 93, 381-388.	0.9	88
190	COMPARISON OF THE RESTRICTION ENDONUCLEASE DIGESTION PATTERNS OF MITOCHONDRIAL DNA FROM NORMAL AND MALE STERILE CYTOPLASMS OF <i>ZEA MAYS</i> L. Genetics, 1982, 102, 109-128.	1.2	76
191	The genome of Zea mays, its organization and homology to related grasses. Chromosoma, 1980, 79, 251-270.	1.0	170
192	Control Mechanisms for Plant Embryogeny. , 1978, , 113-166.		51
193	Benzyladenine Reversal of Abscisic Acid Inhibition of Growth and RNA Synthesis in Germinating Bean Axes. Plant Physiology, 1975, 56, 575-578.	2.3	32
194	RNA METABOLISM IN DEVELOPING COTYLEDONS OF PHASEOLUS VULGARIS*. New Phytologist, 1973, 72, 479-483.	3.5	16
195	Effect of Actinomycin D on Growth and RNA Synthesis during Germination of <i>Phaseolus Vulgaris </i> Vulgaris	0.2	2
196	Rate of RNA synthesis and tRNA end-labeling during early development of Phaseolus. Planta, 1972, 108, 161-171.	1.6	35
197	RNA metabolism during embryo development and germination of Phaseolus vulgaris. Developmental Biology, 1971, 26, 369-379.	0.9	49