
Alla V Mitrofanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/31599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Benefit of B7-1 staining and abatacept for treatment-resistant post-transplant focal segmental glomerulosclerosis in a predominantly pediatric cohort: time for a reappraisal. Pediatric Nephrology, 2023, 38, 145-159.	1.7	12
2	Sphingomyelin phosphodiesterase acid like 3B (SMPDL3b) regulates Perilipin5 (PLIN5) expression and mediates lipid droplet formation. Genes and Diseases, 2022, 9, 1397-1400.	3.4	4
3	Discoidin domain receptor 1 activation links extracellular matrix to podocyte lipotoxicity in Alport syndrome. EBioMedicine, 2021, 63, 103162.	6.1	27
4	APOL1 risk variants affect podocyte lipid homeostasis and energy production in focal segmental glomerulosclerosis. Human Molecular Genetics, 2021, 30, 182-197.	2.9	27
5	New insights into renal lipid dysmetabolism in diabetic kidney disease. World Journal of Diabetes, 2021, 12, 524-540.	3.5	37
6	Compounds targeting OSBPL7 increase ABCA1-dependent cholesterol efflux preserving kidney function in two models of kidney disease. Nature Communications, 2021, 12, 4662.	12.8	24
7	Sphingosine-1-Phosphate Metabolism and Signaling in Kidney Diseases. Journal of the American Society of Nephrology: JASN, 2021, 32, 9-31.	6.1	24
8	Sterol-O-acyltransferase-1 has a role in kidney disease associated with diabetes and Alport syndrome. Kidney International, 2020, 98, 1275-1285.	5.2	27
9	Lipid deposition and metaflammation in diabetic kidney disease. Current Opinion in Pharmacology, 2020, 55, 60-72.	3.5	14
10	Modular Microphysiological System for Modeling of Biologic Barrier Function. Frontiers in Bioengineering and Biotechnology, 2020, 8, 581163.	4.1	21
11	Role of Sphingolipid Signaling in Glomerular Diseases: Focus on DKD and FSGS. , 2020, 1, 56-69.		9
12	Regulation of the amount of ceramide-1-phosphate synthesized in differentiated human podocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158517.	2.4	26
13	Lipid mediators of insulin signaling in diabetic kidney disease. American Journal of Physiology - Renal Physiology, 2019, 317, F1241-F1252.	2.7	17
14	Crosstalk Between Lipids and Mitochondria in Diabetic Kidney Disease. Current Diabetes Reports, 2019, 19, 144.	4.2	55
15	ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes. Journal of Clinical Investigation, 2019, 129, 3387-3400.	8.2	103
16	Hydroxypropyl-β-cyclodextrin protects from kidney disease in experimental Alport syndrome and focal segmental glomerulosclerosis. Kidney International, 2018, 94, 1151-1159.	5.2	56
17	Genetic determination of the vascular reactions in humans in response to the diving reflex. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H622-H631.	3.2	20
18	Sphingomyelinaseâ€like phosphodiesterase 3b mediates radiationâ€induced damage of renal podocytes. FASEB Journal, 2017, 31, 771-780.	0.5	39

#	Article	IF	CITATIONS
19	Abstract 904: Podocyte-specific SMPDI3b modulates radiation-induced renal dysfunction. , 2017, , .		0
20	Nephrin Contributes to Insulin Secretion and Affects Mammalian Target of Rapamycin Signaling Independently of Insulin Receptor. Journal of the American Society of Nephrology: JASN, 2016, 27, 1029-1041.	6.1	17
21	Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. Journal of Clinical Investigation, 2016, 126, 3336-3350.	8.2	123
22	Sphingomyelinase-Like Phosphodiesterase 3b Expression Levels Determine Podocyte Injury Phenotypes in Glomerular Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 133-147.	6.1	119
23	Podocyte-Specific GLUT4-Deficient Mice Have Fewer and Larger Podocytes and Are Protected From Diabetic Nephropathy. Diabetes, 2014, 63, 701-714.	0.6	52
24	Structural Determinants of the Insulin Receptor-related Receptor Activation by Alkali. Journal of Biological Chemistry, 2013, 288, 33884-33893.	3.4	23