Alla V Mitrofanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/31599/publications.pdf

Version: 2024-02-01

24 876 papers citations

24

all docs

24 docs citations 17 h-index

471509

24 times ranked 677142 22 g-index

1034 citing authors

#	Article	IF	Citations
1	Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. Journal of Clinical Investigation, 2016, 126, 3336-3350.	8.2	123
2	Sphingomyelinase-Like Phosphodiesterase 3b Expression Levels Determine Podocyte Injury Phenotypes in Glomerular Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 133-147.	6.1	119
3	ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes. Journal of Clinical Investigation, 2019, 129, 3387-3400.	8.2	103
4	Hydroxypropyl- \hat{l}^2 -cyclodextrin protects from kidney disease in experimental Alport syndrome and focal segmental glomerulosclerosis. Kidney International, 2018, 94, 1151-1159.	5 . 2	56
5	Crosstalk Between Lipids and Mitochondria in Diabetic Kidney Disease. Current Diabetes Reports, 2019, 19, 144.	4.2	55
6	Podocyte-Specific GLUT4-Deficient Mice Have Fewer and Larger Podocytes and Are Protected From Diabetic Nephropathy. Diabetes, 2014, 63, 701-714.	0.6	52
7	Sphingomyelinaseâ€like phosphodiesterase 3b mediates radiationâ€induced damage of renal podocytes. FASEB Journal, 2017, 31, 771-780.	0.5	39
8	New insights into renal lipid dysmetabolism in diabetic kidney disease. World Journal of Diabetes, 2021, 12, 524-540.	3 . 5	37
9	Sterol-O-acyltransferase-1 has a role in kidney disease associated with diabetes and Alport syndrome. Kidney International, 2020, 98, 1275-1285.	5 . 2	27
10	Discoidin domain receptor 1 activation links extracellular matrix to podocyte lipotoxicity in Alport syndrome. EBioMedicine, 2021, 63, 103162.	6.1	27
11	APOL1 risk variants affect podocyte lipid homeostasis and energy production in focal segmental glomerulosclerosis. Human Molecular Genetics, 2021, 30, 182-197.	2.9	27
12	Regulation of the amount of ceramide-1-phosphate synthesized in differentiated human podocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158517.	2.4	26
13	Compounds targeting OSBPL7 increase ABCA1-dependent cholesterol efflux preserving kidney function in two models of kidney disease. Nature Communications, 2021, 12, 4662.	12.8	24
14	Sphingosine-1-Phosphate Metabolism and Signaling in Kidney Diseases. Journal of the American Society of Nephrology: JASN, 2021, 32, 9-31.	6.1	24
15	Structural Determinants of the Insulin Receptor-related Receptor Activation by Alkali. Journal of Biological Chemistry, 2013, 288, 33884-33893.	3.4	23
16	Modular Microphysiological System for Modeling of Biologic Barrier Function. Frontiers in Bioengineering and Biotechnology, 2020, 8, 581163.	4.1	21
17	Genetic determination of the vascular reactions in humans in response to the diving reflex. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H622-H631.	3.2	20
18	Nephrin Contributes to Insulin Secretion and Affects Mammalian Target of Rapamycin Signaling Independently of Insulin Receptor. Journal of the American Society of Nephrology: JASN, 2016, 27, 1029-1041.	6.1	17

#	Article	lF	CITATIONS
19	Lipid mediators of insulin signaling in diabetic kidney disease. American Journal of Physiology - Renal Physiology, 2019, 317, F1241-F1252.	2.7	17
20	Lipid deposition and metaflammation in diabetic kidney disease. Current Opinion in Pharmacology, 2020, 55, 60-72.	3.5	14
21	Benefit of B7-1 staining and abatacept for treatment-resistant post-transplant focal segmental glomerulosclerosis in a predominantly pediatric cohort: time for a reappraisal. Pediatric Nephrology, 2023, 38, 145-159.	1.7	12
22	Role of Sphingolipid Signaling in Glomerular Diseases: Focus on DKD and FSGS., 2020, 1, 56-69.		9
23	Sphingomyelin phosphodiesterase acid like 3B (SMPDL3b) regulates Perilipin5 (PLIN5) expression and mediates lipid droplet formation. Genes and Diseases, 2022, 9, 1397-1400.	3.4	4
24	Abstract 904: Podocyte-specific SMPDI3b modulates radiation-induced renal dysfunction., 2017,,.		0