
Nathalie Cotte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3159595/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interseismic coupling along the Mexican subduction zone seen by InSAR and GNSS. Earth and Planetary Science Letters, 2022, 586, 117534.	4.4	9
2	Transient Brittle Creep Mechanism Explains Early Postseismic Phase of the 2011 Tohokuâ€Oki Megathrust Earthquake: Observations by Highâ€Rate GPS Solutions. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	6
3	Fourteen‥ear Acceleration Along the Japan Trench. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021226.	3.4	6
4	Independent Component Analysis and Parametric Approach for Source Separation in InSAR Time Series at Regional Scale: Application to the 2017–2018 Slow Slip Event in Guerrero (Mexico). Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018187.	3.4	31
5	Postseismic deformation following the April 25, 2015 Gorkha earthquake (Nepal): Afterslip versus viscous relaxation. Journal of Asian Earth Sciences, 2019, 176, 105-119.	2.3	22
6	Revisiting Slow Slip Events Occurrence in Boso Peninsula, Japan, Combining GPS Data and Repeating Earthquakes Analysis. Journal of Geophysical Research: Solid Earth, 2018, 123, 1502-1515.	3.4	13
7	Kinematic study of Iquique 2014 M 8.1 earthquake: Understanding the segmentation of the seismogenic zone. Earth and Planetary Science Letters, 2018, 503, 131-143.	4.4	19
8	An 8Âmonth slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophysical Research Letters, 2017, 44, 4046-4053.	4.0	145
9	A geodetic matched filter search for slow slip with application to the Mexico subduction zone. Journal of Geophysical Research: Solid Earth, 2017, 122, 10,498.	3.4	47
10	GPS deformation related to the <i>M_w</i> Â7.3, 2014, Papanoa earthquake (Mexico) reveals the aseismic behavior of the Guerrero seismic gap. Geophysical Research Letters, 2017, 44, 6039-6047.	4.0	17
11	Postseismic relocking of the subduction megathrust following the 2007 Pisco, Peru, earthquake. Journal of Geophysical Research: Solid Earth, 2016, 121, 3978-3995.	3.4	35
12	Slow Slip History for the MEXICO Subduction Zone: 2005 Through 2011. Pure and Applied Geophysics, 2016, 173, 3445-3465.	1.9	46
13	Lateral Variations of Interplate Coupling along the Mexican Subduction Interface: Relationships with Long-Term Morphology and Fault Zone Mechanical Properties. Pure and Applied Geophysics, 2016, 173, 3467-3486.	1.9	20
14	Triggering of the 2014 Mw7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico. Nature Geoscience, 2016, 9, 829-833.	12.9	156
15	Uncovering the geodetic signature of silent slip through repeating earthquakes. Geophysical Research Letters, 2015, 42, 2774-2779.	4.0	86
16	Coherence between geodetic and seismic deformation in a context of slow tectonic activity (SW Alps,) Tj ETQo	0 0 0 روBT	/Overlock 10

17	GPS constraints on the 2011-2012 Oaxaca slow slip event that preceded the 2012 March 20 Ometepec earthquake, southern Mexico. Geophysical Journal International, 2014, 197, 1593-1607.	2.4	56
18	Seismic velocity changes, strain rate and non-volcanic tremors during the 2009–2010 slow slip event in Guerrero, Mexico. Geophysical Journal International, 2014, 196, 447-460.	2.4	31

NATHALIE COTTE

#	Article	IF	CITATIONS
19	GPS constraints on the Mw = 7.5 Ometepec earthquake sequence, southern Mexico: coseismic and post-seismic deformation. Geophysical Journal International, 2014, 199, 200-218.	2.4	23
20	Slow slip event in the Mexican subduction zone: Evidence of shallower slip in the Guerrero seismic gap for the 2006 event revealed by the joint inversion of InSAR and GPS data. Earth and Planetary Science Letters, 2013, 367, 52-60.	4.4	53
21	Slow slip events and strain accumulation in the Guerrero gap, Mexico. Journal of Geophysical Research, 2012, 117, .	3.3	146
22	Triggering of tremors and slow slip event in Guerrero, Mexico, by the 2010 Mw 8.8 Maule, Chile, earthquake. Journal of Geophysical Research, 2012, 117, .	3.3	77
23	Finding the buried record of past earthquakes with GPR-based palaeoseismology: a case study on the Hope fault, New Zealand. Geophysical Journal International, 2012, 189, 73-100.	2.4	35
24	Two successive slow slip events evidenced in 2009–2010 by a dense GPS network in Guerrero, Mexico. Geophysical Research Letters, 2011, 38, .	4.0	21
25	Spatial and temporal evolution of a long term slow slip event: the 2006 Guerrero Slow Slip Event. Geophysical Journal International, 2011, 184, 816-828.	2.4	103
26	Slow slip events in Mexico revised from the processing of 11 year GPS observations. Journal of Geophysical Research, 2010, 115, .	3.3	79
27	The 2006 slow slip event and nonvolcanic tremor in the Mexican subduction zone. Geophysical Research Letters, 2010, 37, .	4.0	88
28	Distribution of the right-lateral strike–slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran): Evidence from present-day GPS velocities. Earth and Planetary Science Letters, 2008, 275, 342-347.	4.4	70
29	Measuring surface wave phase velocities beneath small broad-band arrays: tests of an improved algorithm and application to the French Alps. Geophysical Journal International, 2003, 154, 903-912.	2.4	25
30	Sharp contrast in lithospheric structure across the Sorgenfrei–Tornquist Zone as inferred by Rayleigh wave analysis of TOR1 project data. Tectonophysics, 2002, 360, 75-88.	2.2	74
31	Testing group velocity maps for Eurasia. Geophysical Journal International, 2002, 150, 639-650.	2.4	8
32	Surface wave waveform anomalies at the Saudi Seismic Network. Geophysical Research Letters, 2001, 28, 4383-4386.	4.0	5
33	Off-great-circle propagation of intermediate-period surface waves observed on a dense array in the French Alps. Geophysical Journal International, 2000, 142, 825-840.	2.4	43
34	Determination of the crustal structure in southern Tibet by dispersion and amplitude analysis of Rayleigh waves. Geophysical Journal International, 1999, 138, 809-819.	2.4	57