Marcin KaÅ,ek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3159557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microwave-Assisted Palladium-Catalyzed Cross-Coupling of Aryl and Vinyl Halides with H-Phosphonate Diesters. Organic Letters, 2008, 10, 4637-4640.	4.6	174
2	Preparation of Arylphosphonates by Palladium(0) atalyzed Cross oupling in the Presence of Acetate Additives: Synthetic and Mechanistic Studies. Advanced Synthesis and Catalysis, 2009, 351, 3207-3216.	4.3	147
3	Phosphine-Catalyzed Enantioselective Intramolecular [3+2] Annulations To Generate Fused Ring Systems. Journal of the American Chemical Society, 2015, 137, 4587-4591.	13.7	103
4	mRNA Decapping Is Promoted by an RNA-Binding Channel in Dcp2. Molecular Cell, 2008, 29, 324-336.	9.7	99
5	Pd(0)-Catalyzed Phosphorusâ^'Carbon Bond Formation. Mechanistic and Synthetic Studies on the Role of the Palladium Sources and Anionic Additives. Organometallics, 2007, 26, 5840-5847.	2.3	82
6	Palladium-Catalyzed Câ^'P Bond Formation: Mechanistic Studies on the Ligand Substitution and the Reductive Elimination. An Intramolecular Catalysis by the Acetate Group in Pd ^{II} Complexes. Organometallics, 2008, 27, 5876-5888.	2.3	79
7	Phosphine-Catalyzed Doubly Stereoconvergent γ-Additions of Racemic Heterocycles to Racemic Allenoates: The Catalytic Enantioselective Synthesis of Protected α,α-Disubstituted α-Amino Acid Derivatives. Journal of the American Chemical Society, 2015, 137, 9438-9442.	13.7	75
8	Differential Inhibition of mRNA Degradation Pathways by Novel Cap Analogs. Journal of Biological Chemistry, 2006, 281, 1857-1867.	3.4	73
9	Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology. Accounts of Chemical Research, 2016, 49, 1006-1018.	15.6	73
10	Mechanism, reactivity, and selectivity of the iridium-catalyzed C(sp ³)–H borylation of chlorosilanes. Chemical Science, 2015, 6, 1735-1746.	7.4	63
11	Palladium-Catalyzed Propargylic Substitution with Phosphorus Nucleophiles: Efficient, Stereoselective Synthesis of Allenylphosphonates and Related Compounds. Organic Letters, 2010, 12, 4702-4704.	4.6	61
12	Effective Modulation of DNA Duplex Stability by Reversible Transition Metal Complex Formation in the Minor Groove. Journal of the American Chemical Society, 2007, 129, 9392-9400.	13.7	58
13	Enzymatically stable 5′ mRNA cap analogs: Synthesis and binding studies with human DcpS decapping enzyme. Bioorganic and Medicinal Chemistry, 2006, 14, 3223-3230.	3.0	51
14	Novel, Stereoselective and Stereospecific Synthesis of Allenylphosphonates and Related Compounds <i>via</i> Palladiumâ€Catalyzed Propargylic Substitution. Advanced Synthesis and Catalysis, 2011, 353, 1741-1755.	4.3	47
15	Mechanism and Selectivity of Cooperatively Catalyzed Meyer–Schuster Rearrangement/Tsuji–Trost Allylic Substitution. Evaluation of Synergistic Catalysis by Means of Combined DFT and Kinetics Simulations. Journal of the American Chemical Society, 2017, 139, 10250-10266.	13.7	43
16	A direct method for the synthesis of nucleoside 5′-methylenebis(phosphonate)s from nucleosides. Tetrahedron Letters, 2005, 46, 2417-2421.	1.4	38
17	Efficient synthesis of mono- and diarylphosphinic acids: a microwave-assisted palladium-catalyzed cross-coupling of aryl halides with phosphinate. Tetrahedron, 2009, 65, 10406-10412.	1.9	35
18	Atomâ€Efficient Gold(I)â€Chlorideâ€Catalyzed Synthesis of αâ€Sulfenylated Carbonyl Compounds from Propargylic Alcohols and Aryl Thiols: Substrate Scope and Experimental and Theoretical Mechanistic Investigation, Chemistry - A European Journal, 2013, 19, 17939-17950.	3.3	33

Marcin KaÅ,ek

#	Article	IF	CITATIONS
19	lodine-promoted silylation of alcohols with silyl chlorides. Synthetic and mechanistic studies. Tetrahedron, 2008, 64, 8843-8850.	1.9	32
20	Preparation of benzylphosphonates via a palladium(0)-catalyzed cross-coupling of H-phosphonate diesters with benzyl halides. Synthetic and mechanistic studies. New Journal of Chemistry, 2010, 34, 967.	2.8	31
21	Organocatalytic Group Transfer Reactions with Hypervalent IodineÂ-Reagents. Synthesis, 2019, 51, 359-370.	2.3	30
22	SYNTHESIS AND BIOCHEMICAL PROPERTIES OF NOVEL mRNA 5′ CAP ANALOGS RESISTANT TO ENZYMATIC HYDROLYSIS. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 615-621.	1.1	28
23	<i>N</i> -Heterocyclic Carbene-Catalyzed Synthesis of Ynones via C–H Alkynylation of Aldehydes with Alkynyliodonium Salts—Evidence for Alkynyl Transfer via Direct Substitution at Acetylenic Carbon. ACS Catalysis, 2020, 10, 831-841.	11.2	27
24	Combining Meyer–Schuster Rearrangement with Aldol and Mannich Reactions: Theoretical Study of the Intermediate Interception Strategy. Journal of the American Chemical Society, 2012, 134, 19159-19169.	13.7	26
25	Transitionâ€Metalâ€Free Aryl–Aryl Crossâ€Coupling: Câ^'H Arylation of 2â€Naphthols with Diaryliodonium Salts. Chemistry - A European Journal, 2019, 25, 9619-9623.	3.3	25
26	<i>N</i> -Heterocyclic Carbene-Catalyzed Olefination of Aldehydes with Vinyliodonium Salts To Generate α,β-Unsaturated Ketones. Organic Letters, 2018, 20, 1906-1909.	4.6	23
27	Mechanism and Selectivity of Rhodium-Catalyzed 1:2 Coupling of Aldehydes and Allenes. Journal of the American Chemical Society, 2013, 135, 7647-7659.	13.7	22
28	Caution in the Use of Nonlinear Effects as a Mechanistic Tool for Catalytic Enantioconvergent Reactions: Intrinsic Negative Nonlinear Effects in the Absence of Higher-Order Species. Journal of the American Chemical Society, 2017, 139, 4225-4229.	13.7	21
29	Mg ²⁺ -Dependent Methyl Transfer by a Knotted Protein: A Molecular Dynamics Simulation and Quantum Mechanics Study. ACS Catalysis, 2020, 10, 8058-8068.	11.2	15
30	Mechanism of Iodine(III)â€Promoted Oxidative Dearomatizing Hydroxylation of Phenols: Evidence for a Radicalâ€Chain Pathway. Chemistry - A European Journal, 2020, 26, 11584-11592.	3.3	15
31	The Case for the Intermediacy of Monomeric Metaphosphate Analogues during Oxidation of H-Phosphonothioate, H-Phosphonodithioate, and H-Phosphonoselenoate Monoesters: Mechanistic and Synthetic Studies. Journal of Organic Chemistry, 2008, 73, 5029-5038.	3.2	13
32	Synthesis of Aryl Sulfides by Metalâ€Free Arylation of Thiols with Diaryliodonium Salts under Basic Conditions**. European Journal of Organic Chemistry, 2022, 2022, .	2.4	12
33	Identification of efficient and sequence specific bimolecular artificial ribonucleases by a combinatorial approach. Chemical Communications, 2008, , 762-764.	4.1	11
34	A New Reagent System for Efficient Silylation of Alcohols: Silyl Chloride- <i>N</i> -Methylimidazole-Iodine. Synlett, 2008, 2008, 37-40.	1.8	11
35	Mechanistic Insight into Enantioselective Palladiumâ€Catalyzed Oxidative Carbocyclization–Borylation of Enallenes. Chemistry - A European Journal, 2018, 24, 2433-2439.	3.3	11
36	Computational Study of the Mechanism and Selectivity of Palladium-Catalyzed Propargylic Substitution with Phosphorus Nucleophiles. Chemistry - A European Journal, 2012, 18, 12424-12436.	3.3	10

Marcin KaÅ,ek

#	Article	IF	CITATIONS
37	Interaction of human decapping scavenger with 5′ mRNA cap analogues: structural requirements for catalytic activity. Journal of Physics Condensed Matter, 2007, 19, 285217.	1.8	8
38	On the Sulfurization of <i>H</i> -Phosphonate Diesters and Phosphite Triesters Using Elemental Sulfur. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 908-916.	1.6	7
39	NOVEL DINUCLEOSIDE 5â€2,5â€2-TRIPHOSPHATE CAP ANALOGUES. SYNTHESIS AND AFFINITY FOR MURINE TRANSLATION FACTOR eIF4E. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 629-633.	1.1	6
40	Synthesis of Pummerer's ketone and its analogs by iodosobenzene-promoted oxidative phenolic coupling. Tetrahedron Letters, 2020, 61, 152459.	1.4	6
41	Synthesis of nucleoside phosphorothio-, phosphorodithio- and phosphoroselenoate diesters via oxidative esterification of the corresponding H-phosphonate analogues. Nucleic Acids Symposium Series, 2008, 52, 285-286.	0.3	2
42	Diazonium-Based Covalent Molecular Wiring of Single-Layer Graphene Leads to Enhanced Unidirectional Photocurrent Generation through the p-doping Effect. Chemistry of Materials, 2022, 34, 3744-3758.	6.7	2
43	31P NMR and Computational Studies on Stereochemistry of Conversion of Phosphoramidate Diesters into the Corresponding Phosphotriesters. Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 552-564.	1.1	1
44	Second generation of nucleotide analogues. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-4.	1.6	0