
## Xiaojie Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3159375/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | lF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | T Cell Dysfunction in Cancer Immunity and Immunotherapy. Frontiers in Immunology, 2019, 10, 1719.                                                                                                                | 4.8 | 219       |
| 2  | CRISPR-Cas9: a new and promising player in gene therapy. Journal of Medical Genetics, 2015, 52, 289-296.                                                                                                         | 3.2 | 150       |
| 3  | Decreased levels of serum exosomal miRâ€638 predict poor prognosis in hepatocellular carcinoma.<br>Journal of Cellular Biochemistry, 2018, 119, 4711-4716.                                                       | 2.6 | 135       |
| 4  | Resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms, predictive factors, and future perspectives. Biomarker Research, 2020, 8, 35.                                                                | 6.8 | 122       |
| 5  | Competing endogenous RNA interplay in cancer: mechanism, methodology, and perspectives. Tumor<br>Biology, 2015, 36, 479-488.                                                                                     | 1.8 | 121       |
| 6  | CRISPR-Cas9 for in vivo Gene Therapy: Promise and Hurdles. Molecular Therapy - Nucleic Acids, 2016, 5, e349.                                                                                                     | 5.1 | 120       |
| 7  | Pseudogene in cancer: real functions and promising signature. Journal of Medical Genetics, 2015, 52, 17-24.                                                                                                      | 3.2 | 116       |
| 8  | 14-3-3ζ delivered by hepatocellular carcinoma-derived exosomes impaired anti-tumor function of tumor-infiltrating TÂlymphocytes. Cell Death and Disease, 2018, 9, 159.                                           | 6.3 | 96        |
| 9  | Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities.<br>Oncotarget, 2017, 8, 90521-90531.                                                                            | 1.8 | 81        |
| 10 | Immunotherapy for hepatocellular carcinoma: recent advances and future perspectives. Therapeutic<br>Advances in Medical Oncology, 2019, 11, 175883591986269.                                                     | 3.2 | 75        |
| 11 | LINE-1 in cancer: multifaceted functions and potential clinical implications. Genetics in Medicine, 2016, 18, 431-439.                                                                                           | 2.4 | 67        |
| 12 | The long noncoding RNA NEAT1 contributes to hepatocellular carcinoma development by sponging<br>miRâ€485 and enhancing the expression of the STAT3. Journal of Cellular Physiology, 2018, 233, 6733-6741.        | 4.1 | 56        |
| 13 | NEAT1 upregulates TGFâ€Î²1 to induce hepatocellular carcinoma progression by sponging hsaâ€mirâ€139â€5p.<br>Journal of Cellular Physiology, 2018, 233, 8578-8587.                                                | 4.1 | 56        |
| 14 | Exosomes derived from exhausted CD8+ T cells impaired the anticancer function of normal CD8+ T cells. Journal of Medical Genetics, 2019, 56, 29-31.                                                              | 3.2 | 55        |
| 15 | Oridonin, a novel lysine acetyltransferases inhibitor, inhibits proliferation and induces apoptosis in<br>gastric cancer cells through p53- and caspase-3-mediated mechanisms. Oncotarget, 2016, 7, 22623-22631. | 1.8 | 52        |
| 16 | Therapeutics for advanced hepatocellular carcinoma: Recent advances, current dilemma, and future<br>directions. Journal of Cellular Physiology, 2019, 234, 12122-12132.                                          | 4.1 | 47        |
| 17 | CRISPR-Cas9 for medical genetic screens: applications and future perspectives. Journal of Medical Genetics, 2016, 53, 91-97.                                                                                     | 3.2 | 45        |
| 18 | T cell exhaustion in cancer: Mechanisms and clinical implications. Journal of Cellular Biochemistry, 2018, 119, 4279-4286.                                                                                       | 2.6 | 40        |

Xiaojie Lu

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Applications and advances of CRISPR-Cas9 in cancer immunotherapy. Journal of Medical Genetics, 2019, 56, 4-9.                                                                                | 3.2 | 39        |
| 20 | Comprehensive treatments for hepatocellular carcinoma with portal vein tumor thrombosis. Journal of Cellular Physiology, 2019, 234, 1062-1070.                                               | 4.1 | 36        |
| 21 | Krüppel-like factors in hepatocellular carcinoma. Tumor Biology, 2015, 36, 533-541.                                                                                                          | 1.8 | 35        |
| 22 | The LGMN pseudogene promotes tumor progression by acting as a miR-495-3p sponge in glioblastoma.<br>Cancer Letters, 2020, 490, 111-123.                                                      | 7.2 | 33        |
| 23 | CEâ€MS based on moving reaction boundary method for urinary metabolomic analysis of gastric cancer patients. Electrophoresis, 2014, 35, 1032-1039.                                           | 2.4 | 31        |
| 24 | Delivery of a chemotherapeutic drug using novel hollow carbon spheres for esophageal cancer treatment. International Journal of Nanomedicine, 2017, Volume 12, 6759-6769.                    | 6.7 | 31        |
| 25 | Therapeutic advances for patients with intermediate hepatocellular carcinoma. Journal of Cellular<br>Physiology, 2019, 234, 12116-12121.                                                     | 4.1 | 30        |
| 26 | Gut microbiome and cancer immunotherapy. Journal of Cellular Physiology, 2020, 235, 4082-4088.                                                                                               | 4.1 | 30        |
| 27 | Krüppel-like factor 2 promotes liver steatosis through upregulation of CD36. Journal of Lipid Research, 2014, 55, 32-40.                                                                     | 4.2 | 29        |
| 28 | Microwave ablation of hepatocellular carcinoma as first-line treatment: long term outcomes and prognostic factors in 221 patients. Scientific Reports, 2016, 6, 32728.                       | 3.3 | 29        |
| 29 | Four differentially methylated gene pairs to predict the prognosis for early stage hepatocellular carcinoma patients. Journal of Cellular Physiology, 2018, 233, 6583-6590.                  | 4.1 | 28        |
| 30 | Hsa_circ_0070963 inhibits liver fibrosis via regulation of miR-223-3p and LEMD3. Aging, 2020, 12, 1643-1655.                                                                                 | 3.1 | 28        |
| 31 | New Insights into the Epithelial-to-Mesenchymal Transition in Cancer. Trends in Pharmacological Sciences, 2016, 37, 246-248.                                                                 | 8.7 | 27        |
| 32 | Genetic and phenotypic difference in CD8 <sup>+</sup> T cell exhaustion between chronic hepatitis B<br>infection and hepatocellular carcinoma. Journal of Medical Genetics, 2019, 56, 18-21. | 3.2 | 26        |
| 33 | Management of patients with intermediate stage hepatocellular carcinoma. Therapeutic Advances in<br>Medical Oncology, 2020, 12, 175883592097084.                                             | 3.2 | 25        |
| 34 | ldentification of <i>TAF1</i> , <i>HNF4A</i> , and <i>CALM2</i> as potential therapeutic target genes for<br>liver fibrosis. Journal of Cellular Physiology, 2019, 234, 9045-9051.           | 4.1 | 24        |
| 35 | Functional tissue-engineered bone-like graft made of a fibrin scaffold and TG2 gene-modified EMSCs<br>for bone defect repair. NPG Asia Materials, 2021, 13, .                                | 7.9 | 24        |
| 36 | Cancer immunotherapy: challenges and clinical applications. Journal of Medical Genetics, 2019, 56, 1-3.                                                                                      | 3.2 | 22        |

XIAOJIE LU

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | DDX11-AS1 as potential therapy targets for human hepatocellular carcinoma. Oncotarget, 2017, 8, 44195-44202.                                                                                                 | 1.8  | 21        |
| 38 | Safety and efficacy of TACE and gamma knife on hepatocellular carcinoma with portal vein invasion.<br>Gut, 2016, 65, 715-716.                                                                                | 12.1 | 20        |
| 39 | PPAR <i>γ</i> Antagonizes Hypoxia-Induced Activation of Hepatic Stellate Cell through Cross Mediating<br>PI3K/AKT and cGMP/PKG Signaling. PPAR Research, 2018, 2018, 1-10.                                   | 2.4  | 19        |
| 40 | Cancer immunotherapy: Current applications and challenges. Cancer Letters, 2020, 480, 1-3.                                                                                                                   | 7.2  | 19        |
| 41 | Assessment of liver fibrosis with the gamma-glutamyl transpeptidase to platelet ratio: a multicentre validation in patients with HBV infection. Gut, 2018, 67, 1903-1904.                                    | 12.1 | 18        |
| 42 | Krüppel-like factor 2 promotes cell proliferation in hepatocellular carcinoma through up-regulation of c-myc. Cancer Biology and Therapy, 2016, 17, 20-26.                                                   | 3.4  | 17        |
| 43 | The pros and cons of dying tumour cells in adaptive immune responses. Nature Reviews Immunology, 2017, 17, 591-591.                                                                                          | 22.7 | 17        |
| 44 | Circular RNA Circ0021205 Promotes Cholangiocarcinoma Progression Through MiR-204-5p/RAB22A<br>Axis. Frontiers in Cell and Developmental Biology, 2021, 9, 653207.                                            | 3.7  | 17        |
| 45 | Identification of LINC01615 as potential metastasisâ€related long noncoding RNA in hepatocellular carcinoma. Journal of Cellular Physiology, 2019, 234, 12964-12970.                                         | 4.1  | 16        |
| 46 | Identification of copy number variation-driven genes for liver cancer via bioinformatics analysis.<br>Oncology Reports, 2014, 32, 1845-1852.                                                                 | 2.6  | 14        |
| 47 | Laparoscopic Microwave Ablation of Hepatocellular Carcinoma at Liver Surface: Technique<br>Effectiveness and Long-Term Outcomes. Technology in Cancer Research and Treatment, 2019, 18,<br>153303381882433.  | 1.9  | 14        |
| 48 | Discovery of a novel, potent and selective smallâ€molecule inhibitor of PDâ€1/PDâ€L1 interaction with<br>robust <i>in vivo</i> antiâ€tumour efficacy. British Journal of Pharmacology, 2021, 178, 2651-2670. | 5.4  | 13        |
| 49 | Towards In Silico Prediction of the Immune-Checkpoint Blockade Response. Trends in Pharmacological<br>Sciences, 2017, 38, 1041-1051.                                                                         | 8.7  | 12        |
| 50 | Tolerability and efficacy of gamma knife radiosurgery on hepatocellular carcinoma with portal vein tumor thrombosis. Oncotarget, 2016, 7, 3614-3622.                                                         | 1.8  | 12        |
| 51 | The landscape of DNA methylation in hepatocellular carcinoma. Journal of Cellular Physiology, 2019, 234, 2631-2638.                                                                                          | 4.1  | 10        |
| 52 | Modeling cancer processes with CRISPR-Cas9. Trends in Biotechnology, 2015, 33, 317-319.                                                                                                                      | 9.3  | 9         |
| 53 | FibroBox: a novel noninvasive tool for predicting significant liver fibrosis and cirrhosis in HBV infected patients. Biomarker Research, 2020, 8, 48.                                                        | 6.8  | 8         |
| 54 | Lack of Aquaporin 9 Reduces Brain Angiogenesis and Exaggerates Neuronal Loss in the Hippocampus<br>Following Intracranial Hemorrhage in Mice. Journal of Molecular Neuroscience, 2017, 61, 351-358.          | 2.3  | 7         |

XIAOJIE LU

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | DACH 1 inhibits glioma invasion and tumor growth via the Wnt/catenin pathway. OncoTargets and Therapy, 2018, Volume 11, 5853-5863.                                                                       | 2.0 | 7         |
| 56 | Study on the relationship between insulin growth factor 1 and liver fibrosis in patients with chronic hepatitis C with type 2 diabetes mellitus. Journal of Cellular Biochemistry, 2018, 119, 9513-9518. | 2.6 | 7         |
| 57 | Placental Immune Tolerance and Organ Transplantation: Underlying Interconnections and Clinical<br>Implications. Frontiers in Immunology, 2021, 12, 705950.                                               | 4.8 | 5         |
| 58 | Stereotactic Body Radiation Therapy and Ablative Therapies for Solid Tumors: Recent Advances and Clinical Applications. Technology in Cancer Research and Treatment, 2019, 18, 153303381983072.          | 1.9 | 4         |
| 59 | CRISPR in medicine: applications and challenges. Briefings in Functional Genomics, 2020, 19, 151-153.                                                                                                    | 2.7 | 4         |
| 60 | The mechanisms and functions of circular RNAs in human diseases. Gene, 2021, 768, 145324.                                                                                                                | 2.2 | 4         |
| 61 | Managerial Decision-making for Daily Case Allocation Scheduling and the Impact on Perioperative Quality Assurance. Translational Perioperative and Pain Medicine, 2016, 1, 20-30.                        | 0.1 | 3         |
| 62 | Metabolomic Profiling of Neoplastic Lesions in Mice. Methods in Enzymology, 2014, 543, 261-273.                                                                                                          | 1.0 | 2         |
| 63 | Anticancer Opportunity Created by Loss of Tumor Suppressor Genes. Technology in Cancer Research and Treatment, 2016, 15, 729-731.                                                                        | 1.9 | 2         |
| 64 | <scp>CRISPR</scp> screen: a highâ€ŧhroughput approach for cancer genetic research. Clinical Genetics, 2015, 88, 32-33.                                                                                   | 2.0 | 1         |
| 65 | Pseudogene: promising signature for cancer reclassification. Medical Oncology, 2015, 32, 354.                                                                                                            | 2.5 | 1         |
| 66 | Pseudogene transcripts: Participants in tumorigenicity and promising therapeutic targets. Leukemia Research, 2016, 42, 105-106.                                                                          | 0.8 | 1         |
| 67 | Circular RNA and human diseases: Basic research and translational implications. Cellular Signalling, 2021, 86, 110100.                                                                                   | 3.6 | 1         |
| 68 | The applications and advances of CRISPR-Cas9 in medical research. Briefings in Functional Genomics, 2017, 16, 1-3.                                                                                       | 2.7 | 0         |
| 69 | Pitfalls in the non-invasive assessment of liver fibrosis with eLIFT-FM VCTE algorithm. Journal of<br>Hepatology, 2018, 68, 602-603.                                                                     | 3.7 | 0         |
| 70 | Emerging challenge: dynamic solution structures of nucleic acids. Briefings in Functional Genomics, 2019, 18, 157-158.                                                                                   | 2.7 | 0         |
| 71 | Functional genomics in the era of cancer immunotherapy: challenges and clinical implications.<br>Briefings in Functional Genomics, 2019, 18, 83-85.                                                      | 2.7 | 0         |