Miguel A Sogorb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3159008/publications.pdf

Version: 2024-02-01

75 papers 2,456 citations

377584 21 h-index 232693 48 g-index

78 all docs 78 docs citations

times ranked

78

2455 citing authors

#	Article	IF	CITATIONS
1	Case study: risk associated to wearing silver or graphene nanoparticle-coated facemasks for protection against COVID-19. Archives of Toxicology, 2022, 96, 105-119.	1.9	9
2	Interactions of human acetylcholinesterase with phenyl valerate and acetylthiocholine: Thiocholine as an enhancer of phenyl valerate esterase activity. Chemico-Biological Interactions, 2022, 351, 109764.	1.7	2
3	Alternative methods to animal experimentation for testing developmental toxicity., 2022, , 107-125.		O
4	A Transcriptomic Analysis of T98G Human Glioblastoma Cells after Exposure to Cadmium-Selenium Quantum Dots Mainly Reveals Alterations in Neuroinflammation Processes and Hypothalamus Regulation. International Journal of Molecular Sciences, 2022, 23, 2267.	1.8	7
5	Titanium Dioxide, but Not Zinc Oxide, Nanoparticles Cause Severe Transcriptomic Alterations in T98G Human Glioblastoma Cells. International Journal of Molecular Sciences, 2021, 22, 2084.	1.8	11
6	DAEH N-terminal sequence of avian serum albumins as catalytic center of Cu (II)-dependent organophosphorus hydrolyzing A-esterase activity. Chemico-Biological Interactions, 2021, 345, 109524.	1.7	2
7	Effects of silver nanoparticles on T98G human glioblastoma cells. Toxicology and Applied Pharmacology, 2020, 404, 115178.	1.3	14
8	Case study: Is bisphenol S safer than bisphenol A in thermal papers?. Archives of Toxicology, 2019, 93, 1835-1852.	1.9	18
9	Biomarkers for Testing Toxicity and Monitoring Exposure to Xenobiotics. , 2019, , 1165-1174.		1
10	Cholinesterase and phenyl valerate-esterase activities sensitive to organophosphorus compounds in membranes of chicken brain. Toxicology, 2018, 410, 73-82.	2.0	2
11	Albumin, the responsible protein of the Cu2+-dependent hydrolysis of O-hexyl O-2,5-dichlorophenyl phosphoramidate (HDCP) by chicken serum "antagonistic stereoselectivity". Food and Chemical Toxicology, 2018, 120, 523-527.	1.8	9
12	Hydrolyzing activities of phenyl valerate sensitive to organophosphorus compounds paraoxon and mipafox in human neuroblastoma SH-SY5Y cells. Toxicology, 2018, 406-407, 123-128.	2.0	2
13	Copper activation of organophosporus compounds detoxication by chicken serum. Food and Chemical Toxicology, 2017, 106, 417-423.	1.8	9
14	Validated and Nonvalidated Mechanism-Based Methods for Testing Developmental Toxicity. , 2017, , 193-209.		1
15	Editorial. Chemico-Biological Interactions, 2016, 259, 49-50.	1.7	O
16	Effects of mipafox, paraoxon, chlorpyrifos and its metabolite chlorpyrifos-oxon on the expression of biomarker genes of differentiation in D3 mouse embryonic stem cells. Chemico-Biological Interactions, 2016, 259, 368-373.	1.7	11
17	Roles of NTE protein and encoding gene in development and neurodevelopmental toxicity. Chemico-Biological Interactions, 2016, 259, 352-357.	1.7	23
18	Acetylcholine-hydrolyzing activities in soluble brain fraction: Characterization with reversible and irreversible inhibitors. Chemico-Biological Interactions, 2016, 259, 374-381.	1.7	3

#	Article	IF	Citations
19	Expression of biomarker genes of differentiation in D3 mouse embryonic stem cells after exposure to different embryotoxicant and non-embryotoxicant model chemicals. Data in Brief, 2015, 5, 354-365.	0.5	1
20	RNA transcripts for the quantification of differentiation allow marked improvements in the performance of embryonic stem cell test (EST). Toxicology Letters, 2015, 238, 60-69.	0.4	14
21	Biomarkers in biomonitoring of xenobiotics. , 2014, , 965-973.		6
22	Genomic and Phenotypic Alterations of the Neuronal-Like Cells Derived from Human Embryonal Carcinoma Stem Cells (NT2) Caused by Exposure to Organophosphorus Compounds Paraoxon and Mipafox. International Journal of Molecular Sciences, 2014, 15, 905-926.	1.8	22
23	Cholinesterase assay by an efficient fixed time endpoint method. MethodsX, 2014, 1, 258-263.	0.7	21
24	Silencing of PNPLA6, the neuropathy target esterase (NTE) codifying gene, alters neurodifferentiation of human embryonal carcinoma stem cells (NT2). Neuroscience, 2014, 281, 54-67.	1.1	18
25	An integrated approach for detecting embryotoxicity and developmental toxicity of environmental contaminants using in vitro alternative methods. Toxicology Letters, 2014, 230, 356-367.	0.4	41
26	Functional pathways altered after silencing Pnpla6 (the codifying gene of neuropathy target esterase) in mouse embryonic stem cells under differentiation. In Vitro Cellular and Developmental Biology - Animal, 2014, 50, 261-273.	0.7	15
27	Cytotoxic effect against 3T3 fibroblasts cells of saffron floral bio-residues extracts. Food Chemistry, 2014, 147, 55-59.	4.2	22
28	Organophosphorus Pesticide Chlorpyrifos and Its Metabolites Alter the Expression of Biomarker Genes of Differentiation in D3 Mouse Embryonic Stem Cells in a Comparable Way to Other Model Neurodevelopmental Toxicants. Chemical Research in Toxicology, 2014, 27, 1487-1495.	1.7	21
29	Interaction between substrates suggests a relationship between organophosphorus-sensitive phenylvalerate- and acetylcholine-hydrolyzing activities in chicken brain. Toxicology Letters, 2014, 230, 132-138.	0.4	13
30	Chlorpyrifos and its metabolites alter gene expression at non-cytotoxic concentrations in D3 mouse embryonic stem cells under in vitro differentiation: Considerations for embryotoxic risk assessment. Toxicology Letters, 2013, 217, 14-22.	0.4	33
31	Interactions of neuropathy inducers and potentiators/promoters with soluble esterases. Chemico-Biological Interactions, 2013, 203, 245-250.	1.7	10
32	The effect of CO2concentration in neuroectoderm commitment of mouse embryonic stem cells. Journal of Histotechnology, 2013, 36, 11-16.	0.2	3
33	Characterization and Evolution of Exposure to Volatile Organic Compounds in the Spanish Shoemaking Industry over a 5-Year Period. Journal of Occupational and Environmental Hygiene, 2012, 9, 653-662.	0.4	7
34	Mechanism-based models in reproductive and developmental toxicology. , 2011, , 135-146.		6
35	Shortening and Improving the Embryonic Stem Cell Test through the Use of Gene Biomarkers of Differentiation. Journal of Toxicology, 2011, 2011, 1-8.	1.4	16
36	OECD guidelines and validated methods for in vivo testing of reproductive toxicity., 2011,, 123-133.		4

#	Article	IF	CITATIONS
37	Expression of Neuropathy Target Esterase in mouse embryonic stem cells during differentiation. Archives of Toxicology, 2010, 84, 481-491.	1.9	19
38	Serum albumins and detoxication of anti-cholinesterase agents. Chemico-Biological Interactions, 2010, 187, 325-329.	1.7	37
39	Specific Effect of 5-Fluorouracil on α-Fetoprotein Gene Expression During the In Vitro Mouse Embryonic Stem Cell Differentiation. International Journal of Toxicology, 2010, 29, 297-304.	0.6	9
40	An alternative in vitro method for detecting neuropathic compounds based on acetylcholinesterase inhibition and on inhibition and aging of neuropathy target esterase (NTE). Toxicology in Vitro, 2010, 24, 942-952.	1.1	25
41	Serum Albumin is as Efficient as Paraxonase in the Detoxication of Paraoxon at Toxicologically Relevant Concentrations. Chemical Research in Toxicology, 2008, 21, 1524-1529.	1.7	56
42	Plasma phenylacetate and 1-naphthyl acetate hydrolyzing activities of wild birds as possible non-invasive biomarkers of exposure to organophosphorus and carbamate insecticides. Toxicology Letters, 2007, 168, 278-285.	0.4	22
43	Stereospecific hydrolysis of a phosphoramidate as a model to understand the role of biotransformation in the neurotoxicity of chiral organophosphorus compounds. Toxicology Letters, 2007, 170, 157-164.	0.4	13
44	A simple and rapid HPLC–MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 847, 88-94.	1.2	413
45	Recovery of neuropathy target esterase activity after inhibition with mipafox and O-hexyl O-2,5-dichlorophenyl phosphoramidate in bovine chromaffin cell cultures. Chemico-Biological Interactions, 2007, 165, 99-105.	1.7	7
46	An in vitro approach for demonstrating the critical role of serum albumin in the detoxication of the carbamate carbaryl at in vivo toxicologically relevant concentrations. Archives of Toxicology, 2007, 81, 113-119.	1.9	24
47	Comparative hydrolysis of O-hexyl O-2,5-dichlorophenyl phosphoramidate and paraoxon in different tissues of vertebrates. Archives of Toxicology, 2007, 81, 689-695.	1.9	6
48	Comparison of chromaffin cells from several animal sources for their use as an in vitro model to study the mechanism of organophosphorous toxicity. Toxicology Letters, 2006, 165, 221-229.	0.4	8
49	Hydrolysis of carbaryl by human serum albumin. Archives of Toxicology, 2004, 78, 629-634.	1.9	27
50	Bovine chromaffin cell cultures as model to study organophosporus neurotoxicity. Toxicology Letters, 2004, 151, 163-170.	0.4	8
51	Future applications of phosphotriesterases in the prophylaxis and treatment of organophosporus insecticide and nerve agent poisonings. Toxicology Letters, 2004, 151, 219-233.	0.4	125
52	Rabbit Serum Albumin Hydrolyzes the Carbamate Carbaryl. Chemical Research in Toxicology, 2002, 15, 520-526.	1.7	20
53	Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicology Letters, 2002, 128, 215-228.	0.4	476
54	Structural Determinants of the Substrate and Stereochemical Specificity of Phosphotriesteraseâ€. Biochemistry, 2001, 40, 1325-1331.	1.2	126

#	Article	IF	Citations
55	Enhancement, Relaxation, and Reversal of the Stereoselectivity for Phosphotriesterase by Rational Evolution of Active Site Residuesâ€. Biochemistry, 2001, 40, 1332-1339.	1.2	119
56	Stereoselective Detoxification of Chiral Sarin and Soman Analogues by Phosphotriesterase. Bioorganic and Medicinal Chemistry, 2001, 9, 2083-2091.	1.4	58
57	Rationally Engineered Mutants of Phosphotriesterase for Preparative Scale Isolation of Chiral Organophosphates. Journal of the American Chemical Society, 2000, 122, 10206-10207.	6.6	32
58	The Role of Phosphotriesterases in the Detoxication of Organophosphorus Compounds. Critical Reviews in Toxicology, 1999, 29, 21-57.	1.9	74
59	Dichlorophenyl phosphoramidates as substrates for avian and mammalian liver phosphotriesterases: activity levels, calcium dependence and stereospecificity. Chemico-Biological Interactions, 1999, 119-120, 257-262.	1.7	75
60	Peripheral nerve soluble esterases are spontaneously reactivated after inhibition by paraoxon: implications for a new definition of neuropathy target esterase. Chemico-Biological Interactions, 1999, 119-120, 541-550.	1.7	26
61	Enzyme Concentration as an Important Factor in the In Vitro Testing of the Stereospecificity of the Enzymatic Hydrolysis of Organophosphorus Compounds. Toxicology in Vitro, 1999, 13, 689-692.	1.1	44
62	A stereospecific phosphotriesterase in hen liver and brain. Chemico-Biological Interactions, 1998, 108, 187-196.	1.7	18
63	Phosphotriesterase activity identified in purified serum albumins. Archives of Toxicology, 1998, 72, 219-226.	1.9	37
64	Chicken Serum Albumin Hydrolyzes Dichlorophenyl Phosphoramidates by a Mechanism Based on Transient Phosphorylation. Chemical Research in Toxicology, 1998, 11, 1441-1446.	1.7	26
65	Inhibition and aging of neuropathy target esterase by the stereoisomers of a phosphoramidate related to methamidophos. Toxicology Letters, 1997, 93, 95-102.	0.4	17
66	Discrimination of carboxylesterases of chicken neural tissue by inhibition with a neuropathic, non-neuropathic organophosphorus compounds and neuropathy promoter. Chemico-Biological Interactions, 1997, 106, 191-200.	1.7	21
67	An automatable microassay for phenyl valerate esterase activities sensitive to organophosphorus compounds. Toxicology Letters, 1996, 89, 241-247.	0.4	7
68	Bovine chromaffin cells in culture show carboxylesterase activities sensitive to organophosphorus compounds. International Journal of Biochemistry and Cell Biology, 1996, 28, 983-989.	1.2	6
69	The role of nicotinic receptors and calcium channels in mipafox induced inhibition of catecholamine release in bovine chromaffin cells. Environmental Toxicology and Pharmacology, 1996, 1, 241-247.	2.0	4
70	Partial characterization of neuropathy target esterase and related phenyl valerate esterases from bovine adrenal medulla. Journal of Biochemical Toxicology, 1994, 9, 145-152.	0.5	20
71	Non-calcium dependent activity hydrolysing organophosphorus compounds in hen plasma. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1994, 107, 213-219.	0.5	1
72	In vivo inhibition by mipafox of soluble and particulate forms of organophosphorus neuropathy target esterase (NTE) in hen sciatic nerve. Toxicology Letters, 1994, 71, 47-51.	0.4	12

#	Article	IF	CITATIONS
73	Soluble and Particulate Organophosphorus Neuropathy Target Esterase in Brain and Sciatic Nerve of the Hen, Cat, Rat, and Chick. Journal of Neurochemistry, 1993, 61, 2164-2168.	2.1	16
74	The kinetics of O-hexyl O-2,5-dichlorophenyl phosphoramidate hydrolysing activity in hen plasma. Chemico-Biological Interactions, 1993, 87, 117-125.	1.7	12
75	Effect of some metallic cations and organic compounds on theO-hexylO-2,5-dichlorophenyl phosphoramidate hydrolysing activity in hen plasma. Archives of Toxicology, 1993, 67, 416-421.	1.9	9