
## **Charles W Bourque**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3158933/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Central mechanisms of osmosensation and systemic osmoregulation. Nature Reviews Neuroscience, 2008, 9, 519-531.                                                                                                                                   | 10.2 | 559       |
| 2  | Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature, 1993, 364, 341-343.                                                                                                                                            | 27.8 | 297       |
| 3  | Osmoreceptors, Osmoreception, and Osmoregulation. Frontiers in Neuroendocrinology, 1994, 15, 231-274.                                                                                                                                             | 5.2  | 286       |
| 4  | An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nature Neuroscience, 2006, 9, 93-98.                                                                                                                             | 14.8 | 283       |
| 5  | Transient Receptor Potential Vanilloid 1 Is Required for Intrinsic Osmoreception in Organum<br>Vasculosum Lamina Terminalis Neurons and for Normal Thirst Responses to Systemic Hyperosmolality.<br>Journal of Neuroscience, 2006, 26, 9069-9075. | 3.6  | 233       |
| 6  | OSMORECEPTORS IN THE CENTRAL NERVOUS SYSTEM. Annual Review of Physiology, 1997, 59, 601-619.                                                                                                                                                      | 13.1 | 231       |
| 7  | Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling. Science, 2016, 351, 849-854.                                                                                                                                    | 12.6 | 221       |
| 8  | Transient calciumâ€dependent potassium current in magnocellular neurosecretory cells of the rat<br>supraoptic nucleus Journal of Physiology, 1988, 397, 331-347.                                                                                  | 2.9  | 137       |
| 9  | Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep. Nature, 2016,<br>537, 685-688.                                                                                                                            | 27.8 | 130       |
| 10 | NMDA receptorâ€mediated rhythmic bursting activity in rat supraoptic nucleus neurones in vitro<br>Journal of Physiology, 1992, 458, 667-687.                                                                                                      | 2.9  | 129       |
| 11 | Adult NG2-Glia Are Required for Median Eminence-Mediated Leptin Sensing and Body Weight Control.<br>Cell Metabolism, 2016, 23, 797-810.                                                                                                           | 16.2 | 119       |
| 12 | Calcium-dependent potassium conductance in rat supraoptic nucleus neurosecretory neurons.<br>Journal of Neurophysiology, 1985, 54, 1375-1382.                                                                                                     | 1.8  | 117       |
| 13 | Intraterminal recordings from the rat neurohypophysis in vitro Journal of Physiology, 1990, 421, 247-262.                                                                                                                                         | 2.9  | 110       |
| 14 | Hypertonicity Sensing in Organum Vasculosum Lamina Terminalis Neurons: A Mechanical Process<br>Involving <i>TRPV1</i> But Not <i>TRPV4</i> . Journal of Neuroscience, 2011, 31, 14669-14676.                                                      | 3.6  | 110       |
| 15 | High Salt Intake Increases Blood Pressure via BDNF-Mediated Downregulation of KCC2 and Impaired<br>Baroreflex Inhibition of Vasopressin Neurons. Neuron, 2015, 85, 549-560.                                                                       | 8.1  | 107       |
| 16 | The neural basis of homeostatic and anticipatory thirst. Nature Reviews Nephrology, 2018, 14, 11-25.                                                                                                                                              | 9.6  | 106       |
| 17 | Calcium-dependent spike after-current induces burst firing in magnocellular neurosecretory cells.<br>Neuroscience Letters, 1986, 70, 204-209.                                                                                                     | 2.1  | 105       |
| 18 | Apamin and d-tubocurarine block the after-hyperpolarization of rat supraoptic neurosecretory neurons. Neuroscience Letters, 1987, 82, 185-190.                                                                                                    | 2.1  | 105       |

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Properties of supraoptic magnocellular neurones isolated from the adult rat Journal of Physiology, 1992, 455, 291-306.                                                                          | 2.9  | 102       |
| 20 | Integration of sodium and osmosensory signals in vasopressin neurons. Trends in Neurosciences, 2002, 25, 199-205.                                                                               | 8.6  | 98        |
| 21 | Unique Interweaved Microtubule Scaffold Mediates Osmosensory Transduction via Physical Interaction with TRPV1. Neuron, 2014, 83, 866-878.                                                       | 8.1  | 94        |
| 22 | lonic basis for the intrinsic activation of rat supraoptic neurones by hyperosmotic stimuli Journal of<br>Physiology, 1989, 417, 263-277.                                                       | 2.9  | 91        |
| 23 | Central clock excites vasopressin neurons by waking osmosensory afferents during late sleep. Nature<br>Neuroscience, 2010, 13, 467-474.                                                         | 14.8 | 89        |
| 24 | Osmometry in osmosensory neurons. Nature Neuroscience, 2003, 6, 1021-1022.                                                                                                                      | 14.8 | 87        |
| 25 | Chapter 2.1.1 Osmoregulation of vasopressin neurons: A synergy of intrinsic and synaptic processes.<br>Progress in Brain Research, 1999, 119, 59-76.                                            | 1.4  | 84        |
| 26 | Excitatory peptides and osmotic pressure modulate mechanosensitive cation channels in concert.<br>Nature Neuroscience, 2000, 3, 572-579.                                                        | 14.8 | 81        |
| 27 | Evidence for NG2-glia Derived, Adult-Born Functional Neurons in the Hypothalamus. PLoS ONE, 2013, 8, e78236.                                                                                    | 2.5  | 79        |
| 28 | Gadolinium Uncouples Mechanical Detection and Osmoreceptor Potential in Supraoptic Neurons.<br>Neuron, 1996, 16, 175-181.                                                                       | 8.1  | 77        |
| 29 | TRPV1 Gene Required for Thermosensory Transduction and Anticipatory Secretion from Vasopressin Neurons during Hyperthermia. Neuron, 2008, 58, 179-185.                                          | 8.1  | 76        |
| 30 | Autocrine feedback inhibition of plateau potentials terminates phasic bursts in magnocellular<br>neurosecretory cells of the rat supraoptic nucleus. Journal of Physiology, 2004, 557, 949-960. | 2.9  | 74        |
| 31 | The function of Ca2+ channel subtypes in exocytotic secretion: new perspectives from synaptic and non-synaptic release. Progress in Biophysics and Molecular Biology, 2001, 77, 269-303.        | 2.9  | 72        |
| 32 | Taurine Release by Astrocytes Modulates Osmosensitive Glycine Receptor Tone and Excitability in the<br>Adult Supraoptic Nucleus. Journal of Neuroscience, 2012, 32, 12518-12527.                | 3.6  | 70        |
| 33 | Activity-dependent modulation of nerve terminal excitation in a mammalian peptidergic system. Trends in Neurosciences, 1991, 14, 28-30.                                                         | 8.6  | 67        |
| 34 | Flufenamic acid blocks depolarizing afterpotentials and phasic firing in rat supraoptic neurones.<br>Journal of Physiology, 2002, 545, 537-542.                                                 | 2.9  | 67        |
| 35 | Functional N-Methyl-D-Aspartate and Non-N-Methyl-D-Aspartate Receptors are Expressed by Rat<br>Supraoptic Neurosecretory Cells in vitro. Journal of Neuroendocrinology, 1991, 3, 509-514.       | 2.6  | 66        |
| 36 | ΔN-TRPV1: A Molecular Co-detector of Body Temperature and Osmotic Stress. Cell Reports, 2015, 13, 23-30.                                                                                        | 6.4  | 66        |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mechanisms of rhythmogenesis: insights from hypothalamic vasopressin neurons. Trends in<br>Neurosciences, 2006, 29, 108-115.                                                                       | 8.6 | 65        |
| 38 | Actin Filaments Mediate Mechanical Gating during Osmosensory Transduction in Rat Supraoptic<br>Nucleus Neurons. Journal of Neuroscience, 2007, 27, 4008-4013.                                      | 3.6 | 64        |
| 39 | Galanin Inhibits Continuous and Phasic Firing in Rat Hypothalamic Magnocellular Neurosecretory<br>Cells. Journal of Neuroscience, 1997, 17, 6048-6056.                                             | 3.6 | 62        |
| 40 | Excitatory Role of the Hyperpolarization-Activated Inward Current in Phasic and Tonic Firing of Rat<br>Supraoptic Neurons. Journal of Neuroscience, 2000, 20, 4855-4863.                           | 3.6 | 62        |
| 41 | Muscarinic Receptor Modulation of Slow Afterhyperpolarization and Phasic Firing in Rat Supraoptic<br>Nucleus Neurons. Journal of Neuroscience, 2004, 24, 7718-7726.                                | 3.6 | 56        |
| 42 | Synaptic Activation of Rat Supraoptic Neurons by Osmotic Stimulation of the Organum vasculosum<br>lamina terminalis. Neuroendocrinology, 1992, 55, 609-611.                                        | 2.5 | 55        |
| 43 | Coincident Detection of CSF Na+ and Osmotic Pressure in Osmoregulatory Neurons of the Supraoptic<br>Nucleus. Neuron, 1999, 24, 453-460.                                                            | 8.1 | 55        |
| 44 | Osmotic and thermal control of magnocellular neurosecretory neurons – role of an Nâ€ŧerminal<br>variant of <i>trpv1</i> . European Journal of Neuroscience, 2010, 32, 2022-2030.                   | 2.6 | 54        |
| 45 | Calcium-channel subtypes in the somata and axon terminals of magnocellular neurosecretory cells.<br>Trends in Neurosciences, 1996, 19, 440-444.                                                    | 8.6 | 51        |
| 46 | lonic Basis of <scp>on</scp> and <scp>off</scp> Persistent Activity in Layer III Lateral Entorhinal<br>Cortical Principal Neurons. Journal of Neurophysiology, 2008, 99, 2006-2011.                | 1.8 | 51        |
| 47 | Mechanical Basis of Osmosensory Transduction in Magnocellular Neurosecretory Neurones of the<br>Rat Supraoptic Nucleus. Journal of Neuroendocrinology, 2015, 27, 507-515.                          | 2.6 | 49        |
| 48 | Chapter 7 Stretch-inactivated cation channels: cellular targets for modulation of osmosensitivity in supraoptic neurons. Progress in Brain Research, 2002, 139, 85-94.                             | 1.4 | 48        |
| 49 | Phasic bursts in rat magnocellular neurosecretory cells are not intrinsically regenerative in vivo.<br>European Journal of Neuroscience, 2004, 19, 2977-2983.                                      | 2.6 | 48        |
| 50 | Neurophysiological characterization of mammalian osmosensitive neurones. Experimental Physiology, 2007, 92, 499-505.                                                                               | 2.0 | 48        |
| 51 | Endogenous Activation of Supraoptic Nucleus κ-Opioid Receptors Terminates Spontaneous Phasic<br>Bursts in Rat Magnocellular Neurosecretory Cells. Journal of Neurophysiology, 2006, 95, 3235-3244. | 1.8 | 44        |
| 52 | Caesium blocks depolarizing after-potentials and phasic firing in rat supraoptic neurones. Journal of<br>Physiology, 1998, 510, 165-175.                                                           | 2.9 | 43        |
| 53 | Osmosensation in vasopressin neurons: changing actin density to optimize function. Trends in<br>Neurosciences, 2010, 33, 76-83.                                                                    | 8.6 | 43        |
| 54 | Amplification of Transducer Gain by Angiotensin II-Mediated Enhancement of Cortical Actin Density in<br>Osmosensory Neurons. Journal of Neuroscience, 2008, 28, 9536-9544.                         | 3.6 | 41        |

| #  | Article                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Anatomical organization of the rat organum vasculosum laminae terminalis. American Journal of<br>Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R324-R337.                                                                                      | 1.8  | 40        |
| 56 | Activity-dependent synaptic plasticity in the supraoptic nucleus of the rat hypothalamus. Journal of Physiology, 2006, 573, 711-721.                                                                                                                                        | 2.9  | 39        |
| 57 | Density of transient K+current influences excitability in acutely isolated vasopressin and oxytocin neurones of rat hypothalamus. Journal of Physiology, 1998, 511, 423-432.                                                                                                | 2.9  | 38        |
| 58 | elF2α phosphorylation controls thermal nociception. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11949-11954.                                                                                                                | 7.1  | 37        |
| 59 | Sodium regulates clock time and output via an excitatory GABAergic pathway. Nature, 2020, 583, 421-424.                                                                                                                                                                     | 27.8 | 37        |
| 60 | Dynamic and Permissive Roles of TRPV1 and TRPV4 Channels for Thermosensation in Mouse Supraoptic<br>Magnocellular Neurosecretory Neurons. Journal of Neuroscience, 2013, 33, 17160-17165.                                                                                   | 3.6  | 36        |
| 61 | Muscarinic Receptors Control Frequency Tuning Through the Downregulation of an A-Type Potassium<br>Current. Journal of Neurophysiology, 2007, 98, 1526-1537.                                                                                                                | 1.8  | 35        |
| 62 | Osmoreception in magnocellular neurosecretory cells: from single channels to secretion. Trends in<br>Neurosciences, 1994, 17, 340-344.                                                                                                                                      | 8.6  | 34        |
| 63 | Atrial Natriuretic Peptide Modulates Synaptic Transmission from Osmoreceptor Afferents to the Supraoptic Nucleus. Journal of Neuroscience, 1996, 16, 7526-7532.                                                                                                             | 3.6  | 34        |
| 64 | Extrinsic modulation of spike afterpotentials in rat hypothalamoneurohypophysial neurons. Cellular<br>and Molecular Neurobiology, 1998, 18, 3-12.                                                                                                                           | 3.3  | 29        |
| 65 | Membrane Properties Related to the Firing Behavior of Zebrafish Motoneurons. Journal of<br>Neurophysiology, 2003, 89, 657-664.                                                                                                                                              | 1.8  | 28        |
| 66 | Calcium permeability and flux through osmosensory transduction channels of isolated rat supraoptic nucleus neurons. European Journal of Neuroscience, 2006, 23, 1491-1500.                                                                                                  | 2.6  | 27        |
| 67 | Dual role for calcium in the control of spike duration in rat supraoptic neuroendocrine cells.<br>Neuroscience Letters, 1991, 133, 271-274.                                                                                                                                 | 2.1  | 26        |
| 68 | Circumventricular Organs: Gateways to the Brain Axonal Projections From The Organum Vasculosum<br>Lamina Terminalis To The Supraoptic Nucleus: Functional Analysis And Presynaptic Modulation.<br>Clinical and Experimental Pharmacology and Physiology, 2001, 28, 570-574. | 1.9  | 25        |
| 69 | Central and peripheral roles of vasopressin in the circadian defense of body hydration. Best Practice<br>and Research in Clinical Endocrinology and Metabolism, 2017, 31, 535-546.                                                                                          | 4.7  | 25        |
| 70 | Cell-Specific Retrograde Signals Mediate Antiparallel Effects of Angiotensin II on Osmoreceptor<br>Afferents to Vasopressin and Oxytocin Neurons. Cell Reports, 2014, 8, 355-362.                                                                                           | 6.4  | 22        |
| 71 | Dystroglycan and Mitochondrial Ribosomal Protein L34 Regulate Differentiation in the Drosophila<br>Eye. PLoS ONE, 2010, 5, e10488.                                                                                                                                          | 2.5  | 22        |
| 72 | Peptidergic Excitation of Supraoptic Nucleus Neurons: Involvement of Stretch-Inactivated Cation<br>Channels. Experimental Neurology, 2001, 171, 210-218.                                                                                                                    | 4.1  | 20        |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A rat brain slice preserving synaptic connections between neurons of the suprachiasmatic nucleus,<br>organum vasculosum lamina terminalis and supraoptic nucleus. Journal of Neuroscience Methods,<br>2003, 128, 67-77.                   | 2.5  | 20        |
| 74 | Ca <sup>2+</sup> â€dependent K <sup>+</sup> currents and spikeâ€frequency adaptation in medial<br>entorhinal cortex layer II stellate cells. Hippocampus, 2007, 17, 1143-1148.                                                            | 1.9  | 20        |
| 75 | Effects of Peritoneal Sepsis on Rat Central Osmoregulatory Neurons Mediating Thirst and Vasopressin Release. Journal of Neuroscience, 2015, 35, 12188-12197.                                                                              | 3.6  | 20        |
| 76 | Trpv4 Mediates Hypotonic Inhibition of Central Osmosensory Neurons via Taurine Gliotransmission.<br>Cell Reports, 2018, 23, 2245-2253.                                                                                                    | 6.4  | 20        |
| 77 | Depolarizing GABA Transmission Restrains Activity-Dependent Glutamatergic Synapse Formation in the Developing Hippocampal Circuit. Frontiers in Cellular Neuroscience, 2020, 14, 36.                                                      | 3.7  | 20        |
| 78 | Properties of the Transient K+ Current in Acutely Isolated Supraoptic Neurons from Adult Rat.<br>Advances in Experimental Medicine and Biology, 1998, 449, 97-106.                                                                        | 1.6  | 20        |
| 79 | Role of Vasopressin in Rat Models of Salt-Dependent Hypertension. Current Hypertension Reports, 2017, 19, 42.                                                                                                                             | 3.5  | 19        |
| 80 | Ionic basis of the caesiumâ€induced depolarisation in rat supraoptic nucleus neurones. Journal of<br>Physiology, 2001, 536, 797-808.                                                                                                      | 2.9  | 18        |
| 81 | Neurons that drive and quench thirst. Science, 2017, 357, 1092-1093.                                                                                                                                                                      | 12.6 | 18        |
| 82 | Rat supraoptic neurons are resistant to glutamate neurotoxicity. NeuroReport, 1992, 3, 87-90.                                                                                                                                             | 1.2  | 17        |
| 83 | Effects of Salt Loading on the Regulation of Rat Hypothalamic Magnocellular Neurosecretory Cells<br>by Ionotropic GABA and Clycine Receptors. Journal of Neuroendocrinology, 2016, 28, .                                                  | 2.6  | 14        |
| 84 | Effects of Activin-A on Neurons Acutely Isolated from the Rat Supraoptic Nucleus. Journal of Neuroendocrinology, 1995, 7, 661-663.                                                                                                        | 2.6  | 13        |
| 85 | Activation of organum vasculosum neurones and water intake in mice by vasopressin neurones in the suprachiasmatic nucleus. Journal of Neuroendocrinology, 2018, 30, e12577.                                                               | 2.6  | 12        |
| 86 | IL-1Î <sup>2</sup> directly excites isolated rat supraoptic neurons via upregulation of the osmosensory cation<br>current. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006,<br>290, R1183-R1190. | 1.8  | 11        |
| 87 | Neurophysiology of supraoptic neurons in C57/BL mice studied in three acute in vitro preparations.<br>Progress in Brain Research, 2008, 170, 229-242.                                                                                     | 1.4  | 10        |
| 88 | Activity maintains structural plasticity of mossy fiber terminals in the hippocampus. Molecular and Cellular Neurosciences, 2012, 50, 260-271.                                                                                            | 2.2  | 9         |
| 89 | Does a stretch-inactivated cation channel integrate osmotic and peptidergic signals?. Nature Neuroscience, 2000, 3, 847-848.                                                                                                              | 14.8 | 8         |
| 90 | High dietary salt amplifies osmoresponsiveness in vasopressin-releasing neurons. Cell Reports, 2021,<br>34, 108866.                                                                                                                       | 6.4  | 8         |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Detection of activity-dependent vasopressin release from neuronal dendrites and axon terminals using sniffer cells. Journal of Neurophysiology, 2018, 120, 1386-1396.                                                | 1.8 | 7         |
| 92 | Effects of Salt Loading on the Morphology of Astrocytes in the Ventral Glia Limitans of the Rat<br>Supraoptic Nucleus. Journal of Neuroendocrinology, 2016, 28, .                                                    | 2.6 | 6         |
| 93 | Visually guided whole cell patch clamp of mouse supraoptic nucleus neurons in cultured and acute conditions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R68-R76. | 1.8 | 5         |
| 94 | Modulation of spike clustering by NMDA receptors and neurotensin in rat supraoptic nucleus neurons. Journal of Physiology, 2014, 592, 4177-4186.                                                                     | 2.9 | 4         |
| 95 | Osmoregulatory Circuits in Slices and En Bloc Preparations of Rodent Hypothalamus. Neuromethods, 2012, , 211-231.                                                                                                    | 0.3 | 4         |
| 96 | Hypothalamic neurons controlling water homeostasis: it's about time. Current Opinion in Physiology, 2018, 5, 45-50.                                                                                                  | 1.8 | 3         |
| 97 | AUTOREGULATION OF BURSTING OF AVP NEURONS OF THE RAT HYPOTHALMUS. , 2005, , 49-88.                                                                                                                                   |     | 1         |
| 98 | A TRP that makes us feel hyper. Journal of Physiology, 2012, 590, 1779-1780.                                                                                                                                         | 2.9 | 1         |
| 99 | Mechanism and function of phasic firing in vasopressinâ€releasing magnocellular neurosecretory cells. Journal of Neuroendocrinology, 2021, 33, e13048.                                                               | 2.6 | 1         |