
Paul D Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3158760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of Uncertainties in Modelling Land Use Change with an Integrated Cellular Automata–Markov Chain Model. Environmental Modeling and Assessment, 2022, 27, 275-293.	1.2	18
2	Modeling the effects of human influences on water quality and quantity in the Zarrineh River Basin, Iran. Journal of Hydro-Environment Research, 2022, 40, 51-63.	1.0	6
3	Impacts of hydrological alteration on ecosystem services changes of a large river-connected lake (Poyang Lake), China. Journal of Environmental Management, 2022, 310, 114750.	3.8	23
4	Representation of hydrological processes in a rural lowland catchment in Northern Germany using <scp>SWAT</scp> and <scp>SWAT</scp> +. Hydrological Processes, 2022, 36, .	1.1	15
5	Influences of land use changes on the dynamics of water quantity and quality in the German lowland catchment of the StA¶r. Hydrology and Earth System Sciences, 2022, 26, 2561-2582.	1.9	13
6	Effects of land cover, topography, and soil on stream water quality at multiple spatial and seasonal scales in a German lowland catchment. Ecological Indicators, 2021, 120, 106940.	2.6	57
7	Climate change impacts on the water and groundwater resources of the Lake Tana Basin, Ethiopia. Journal of Water and Climate Change, 2021, 12, 1544-1563.	1.2	22
8	Spatially distributed impacts of climate change and groundwater demand on the water resources in a wadi system. Hydrology and Earth System Sciences, 2021, 25, 5065-5081.	1.9	8
9	Twenty years of change: Land and water resources in the Chindwin catchment, Myanmar between 1999 and 2019. Science of the Total Environment, 2021, 798, 148766.	3.9	16
10	Modeling the impact of climate change on streamflow and major hydrological components of an Iranian Wadi system. Journal of Water and Climate Change, 2021, 12, 1598-1613.	1.2	18
11	Statistical analysis of rainfall and streamflow time series in the Lake Tana Basin, Ethiopia. Journal of Water and Climate Change, 2020, 11, 258-273.	1.2	14
12	Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Science of the Total Environment, 2020, 712, 136449.	3.9	128
13	Modeling the spatio-temporal flow dynamics of groundwater-surface water interactions of the Lake Tana Basin, Upper Blue Nile, Ethiopia. Hydrology Research, 2020, 51, 1537-1559.	1.1	15
14	Integrating water use systems and soil and water conservation measures into a hydrological model of an Iranian Wadi system. Journal of Arid Land, 2020, 12, 545-560.	0.9	8
15	Exploring the spatiotemporal water quality variations and their influencing factors in a large floodplain lake in China. Ecological Indicators, 2020, 115, 106454.	2.6	26
16	An improved process-based representation of stream solute transport in the soil and water assessment tools. Hydrological Processes, 2020, 34, 2599-2611.	1.1	7
17	Developing an improved user interface for a physically-based stream solute transport model. Environmental Modelling and Software, 2020, 129, 104715.	1.9	6
18	Identifying the most important spatially distributed variables for explaining land use patterns in a rural lowland catchment in Germany. Journal of Chinese Geography, 2019, 29, 1788-1806.	1.5	12

PAUL D WAGNER

#	Article	IF	CITATIONS
19	Modeling the impact of agricultural crops on the spatial and seasonal variability of water balance components in the Lake Tana basin, Ethiopia. Hydrology Research, 2019, 50, 1376-1396.	1.1	18
20	Gaining prediction accuracy in land use modeling by integrating modeled hydrologic variables. Environmental Modelling and Software, 2019, 115, 155-163.	1.9	18
21	Simple regression models can act as calibration-substitute to approximate transient storage parameters in streams. Advances in Water Resources, 2019, 123, 201-209.	1.7	9
22	Comparing the effects of dynamic versus static representations of land use change in hydrologic impact assessments. Environmental Modelling and Software, 2019, 122, 103987.	1.9	57
23	Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. International Journal of Applied Earth Observation and Geoinformation, 2018, 73, 595-604.	1.4	105
24	Subpixel Mapping of Urban Areas Using EnMAP Data and Multioutput Support Vector Regression. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 1938-1948.	2.3	19
25	Spatio-temporal patterns of land use and cropping frequency in a tropical catchment of South India. Applied Geography, 2017, 89, 124-132.	1.7	17
26	Growing â€~Smart'? Urbanization Processes in the Pune Urban Agglomeration. Sustainability, 2017, 9, 2335.	1.6	47
27	Importance of spatially distributed hydrologic variables for land use change modeling. Environmental Modelling and Software, 2016, 83, 245-254.	1.9	26
28	Dynamic integration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment. Science of the Total Environment, 2016, 539, 153-164.	3.9	88
29	Development of a new downscaling method for hydrologic assessment of climate change impacts in data scarce regions and its application in the Western Chats, India. Regional Environmental Change, 2015, 15, 435-447.	1.4	18
30	An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India. Hydrology and Earth System Sciences, 2013, 17, 2233-2246.	1.9	142
31	Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. Journal of Hydrology, 2012, 464-465, 388-400.	2.3	198
32	Technical Note: Hydrological Modeling with SWAT in a Monsoon-Driven Environment: Experience from the Western Ghats, India. Transactions of the ASABE, 2011, 54, 1783-1790.	1.1	46