Estibaliz Sansinenea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3158186/publications.pdf

Version: 2024-02-01

68 papers 1,306 citations

394421 19 h-index 32 g-index

79 all docs

79 docs citations

79 times ranked 1212 citing authors

#	Article	IF	CITATIONS
1	Secondary metabolites of soil Bacillus spp Biotechnology Letters, 2011, 33, 1523-1538.	2.2	191
2	Re-addressing the biosafety issues of plant growth promoting rhizobacteria. Science of the Total Environment, 2019, 690, 841-852.	8.0	94
3	Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. Applied Microbiology and Biotechnology, 2020, 104, 1013-1034.	3.6	83
4	Auxins of microbial origin and their use in agriculture. Applied Microbiology and Biotechnology, 2020, 104, 8549-8565.	3.6	75
5	Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents. Applied Microbiology and Biotechnology, 2019, 103, 9287-9303.	3.6	68
6	Bacillus spp.: As Plant Growth-Promoting Bacteria. , 2019, , 225-237.		47
7	Organocatalytic Synthesis of Chiral Spirooxindoles with Quaternary Stereogenic Centers. European Journal of Organic Chemistry, 2020, 2020, 5101-5118.	2.4	44
8	Characterisation of two novel bacteriocin-like substances produced by Bacillus amyloliquefaciens ELI149 with broad-spectrum antimicrobial activity. Journal of Global Antimicrobial Resistance, 2017, 11, 177-182.	2.2	42
9	The Role of Beneficial Microorganisms in Soil Quality and Plant Health. Sustainability, 2022, 14, 5358.	3.2	41
10	Cyclic Dipeptides: Secondary Metabolites Isolated from Different Microorganisms with Diverse Biological Activities. Current Medicinal Chemistry, 2017, 24, 2773-2780.	2.4	34
11	Melanin: a photoprotection for Bacillus thuringiensis based biopesticides. Biotechnology Letters, 2015, 37, 483-490.	2.2	32
12	Chemical Compounds Produced by Bacillus sp. Factories and Their Role in Nature. Mini-Reviews in Medicinal Chemistry, 2019, 19, 373-380.	2.4	31
13	Biosynthesis and beneficial effects of microbial gibberellins on crops for sustainable agriculture. Journal of Applied Microbiology, 2022, 132, 1597-1615.	3.1	29
14	The synthetic versatility of oxazolidinethiones. Journal of Sulfur Chemistry, 2007, 28, 109-147.	2.0	28
15	Diketopiperazines derivatives isolated from Bacillus thuringiensis and Bacillus endophyticus, establishment of their configuration by X-ray and their synthesis. Tetrahedron Letters, 2016, 57, 2604-2607.	1.4	26
16	Bacillus spp. as Bio-factories for Antifungal Secondary Metabolites: Innovation Beyond Whole Organism Formulations. Microbial Ecology, 2023, 86, 1-24.	2.8	24
17	Di-2-ethylhexylphthalate May Be a Natural Product, Rather than a Pollutant. Journal of Chemistry, 2018, 2018, 1-7.	1.9	23
18	Recent advancements for microorganisms and their natural compounds useful in agriculture. Applied Microbiology and Biotechnology, 2021, 105, 891-897.	3.6	23

#	Article	IF	CITATIONS
19	Novel rearrangement of N-enoyl oxazolidinethiones to N-substituted 1,3-thiazine-2,4-diones promoted by NbCl5. Tetrahedron Letters, 2006, 47, 1153-1156.	1.4	21
20	An Ultra-Violet Tolerant Wild-Type Strain of Melanin-Producing Bacillus thuringiensis. Jundishapur Journal of Microbiology, 2015, 8, e20910.	0.5	21
21	Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study. Journal of Antibiotics, 2020, 73, 798-802.	2.0	21
22	The Chemistry of Cyclopropanes and New Insights into Organocatalyzed Asymmetric Cyclopropanation. European Journal of Organic Chemistry, 2022, 2022, .	2.4	20
23	A Strong Antifungal Activity of 7-O-Succinyl Macrolactin A vs Macrolactin A from Bacillus amyloliquefaciens ELI149. Current Microbiology, 2020, 77, 3409-3413.	2.2	19
24	Macrolactin Antibiotics: Amazing Natural Products. Mini-Reviews in Medicinal Chemistry, 2020, 20, 584-600.	2.4	18
25	Genetic manipulation in Bacillus thuringiensis for strain improvement. Biotechnology Letters, 2010, 32, 1549-1557.	2.2	12
26	Synthetic Thiazolidinediones: Potential Antidiabetic Compounds. Current Organic Chemistry, 2011, 15, 108-127.	1.6	12
27	Zwittermicin A: A Promising Aminopolyol Antibiotic from Biocontrol Bacteria. Current Organic Chemistry, 2012, 16, 978-987.	1.6	12
28	Dual Trichoderma consortium mediated elevation of systemic defense response against early blight in potato. European Journal of Plant Pathology, 2022, 162, 681-696.	1.7	12
29	Synthesis of N-substituted 2,4-thiazolidinediones from oxazolidinethiones. Tetrahedron Letters, 2005, 46, 7867-7870.	1.4	11
30	Antimycobacterial Natural Products from Marine Pseudopterogorgia elisabethae. Current Organic Synthesis, 2016, 13, 556-568.	1.3	11
31	Rearrangement of oxazolidinethiones to thiazolidinediones or thiazinanediones and their application for the synthesis of chiral allylic ureas and $\hat{l}\pm$ -methyl- \hat{l}^2 -amino acids. Tetrahedron, 2010, 66, 111-120.	1.9	10
32	Trichoderma spp. mediated induction of systemic defense response in brinjal against Sclerotinia sclerotiorum. Current Research in Microbial Sciences, 2021, 2, 100051.	2.3	10
33	Bacterial Siderophores Containing a Thiazoline Ring. Mini-Reviews in Organic Chemistry, 2009, 6, 120-127.	1.3	10
34	Rearrangement of 5-phenylthiazolidine-2,4-diones to chiral \hat{l}_{\pm} -ketoamides via \hat{l}_{\pm} -elimination. Tetrahedron Letters, 2010, 51, 6041-6044.	1.4	9
35	3,4-Dihydroisocoumarins, Interesting Natural Products: Isolation, Organic Syntheses and Biological Activities. Current Organic Synthesis, 2019, 16, 112-129.	1.3	9
36	Bacillus sp. Bacteriocins: Natural Weapons against Bacterial Enemies. Current Medicinal Chemistry, 2021, 28, .	2.4	8

#	Article	IF	Citations
37	The Chemistry of Drugs to Treat Candida albicans. Current Topics in Medicinal Chemistry, 2019, 19, 2554-2566.	2.1	8
38	Antitubercular Natural Terpenoids: Recent Developments and Syntheses. Current Organic Synthesis, 2014, 11, 545-591.	1.3	8
39	Analysis of Bacillus thuringiensis Population Dynamics and Its Interaction With Pseudomonas fluorescens in Soil. Jundishapur Journal of Microbiology, 2015, 8, e27953.	0.5	8
40	Discovery and Description of Bacillus thuringiensis. , 2012, , 3-18.		7
41	Lethal effects of a Mexican Beauveria bassiana (Balsamo) strain against Meccus pallidipennis (Stal). Brazilian Journal of Microbiology, 2014, 45, 551-557.	2.0	7
42	Applications and Patents of Bacillus spp. in Agriculture. , 2019, , 133-146.		6
43	Application of biofertilizers: Current worldwide status. , 2021, , 183-190.		6
44	Asymmetric Aldol Additions with a Titanium Enolate of N-Thioglycolyl Oxazolidinethione. Letters in Organic Chemistry, 2007, 4, 456-461.	0.5	5
45	Cellular damage of plant pathogenic fungi by antifungal compounds produced by Bacillus spp. isolates. Chemistry and Ecology, 2016, 32, 722-732.	1.6	5
46	Diastereoselective hydrogenation of $\hat{l}\pm,\hat{l}^2$ -unsaturated but-2-enamides to access the chiral 3-(p-tolyl) butanoic acids. Tetrahedron Letters, 2017, 58, 235-239.	1.4	5
47	Succinic Acid Production as Secondary Metabolite from Bacillus megaterium ELI24. Natural Products Journal, 2020, 10, 153-157.	0.3	5
48	Diastereoselective alkylations of oxazolidinone vinylogous glycolates. Tetrahedron Letters, 2012, 53, 4775-4778.	1.4	4
49	Asymmetric synthesis of \hat{l}_{\pm},\hat{l}^2 -substituted \hat{l}^3 -amino acids via conjugate addition. Tetrahedron Letters, 2019, 60, 1741-1744.	1.4	4
50	The Role of Entomopathogenic Bacillus Thuringiensis: Is It Only Insect Pathogen?. Biochemistry & Pharmacology: Open Access, 2012, 01, .	0.2	3
51	â€~ Syn-effect ' in the diastereoselective alkylation of 3-[(E)-α,β-unsaturated-γ-substituted]- N -acyloxazolidinones. Tetrahedron, 2015, 71, 4590-4597.	1.9	3
52	Diastereoselective conjugate addition of organocuprates to N-[4-(Dibenzylaminobutenoyl)]oxazolidinone. Synthesis of chiral β-substituted γ-aminoacids. Tetrahedron Letters, 2019, 60, 1646-1648.	1.4	3
53	Asymmetric Organocatalytic Syntheses of Bioactive Compounds. Current Organic Synthesis, 2022, 19, 148-165.	1.3	3
54	Regulatory Issues in Commercialization of Bacillus thuringiensis-Based Biopesticides., 2016,, 69-80.		3

#	Article	IF	CITATIONS
55	A wide spectrum of antibacterial activity of secondary metabolites from Bacillus amyloliquefaciens ELI149. Bioscience Journal, 2020, 36, .	0.4	3
56	A Natural Curcumene Bisabolane Sesquiterpene: Syntheses and Recent Applications. Current Organic Synthesis, 2015, 12, 431-439.	1.3	3
57	Bacillus thuringiensis based biopesticides for integrated crop management. , 2022, , 1-6.		3
58	Melanin: A Solution for Photoprotection of Bacillus thuringiensis Based Biopesticides. Biochemistry & Pharmacology: Open Access, 2014, 03, .	0.2	2
59	Industrial Applications of Novel Compounds from Bacillus sp , 2020, , 81-88.		2
60	The Industrially Important Enzymes from Bacillus Species. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2022, , 89-99.	1.2	2
61	Crystal structure of (E)-1-(2-nitrobenzylidene)-2,2-diphenylhydrazine. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o909-o910.	0.2	1
62	Oxazolidine- and Oxazoline-2-thiones: An Update. Current Organic Synthesis, 2018, 14, .	1.3	1
63	Synthesis of 3-(7-Methylbenzo[d]oxazol-4-yl) Butanoic Acid: A Precursor of (+)-seco-Pseudopteroxazole and (+)-Pseudopteroxazole. Letters in Organic Chemistry, 2018, 15, 1030-1036.	0.5	1
64	Di[(R)-2-ethylhexyl] Phthalate, a Bioactive Metabolite First Isolated from Three Different Bacillus Species, and its Synthesis. Letters in Organic Chemistry, 2020, 17, 90-95.	0.5	1
65	Modern Systems on Internet at the Service of Interaction Between Biochemistry and Pharmacology Fields. Biochemistry & Pharmacology: Open Access, 2012, 01, .	0.2	1
66	Synthesis of N-Substituted 2,4-Thiazolidinediones from Oxazolidinethiones ChemInform, 2006, 37, no.	0.0	O
67	Tuberculosis and New Treatments. Biochemistry & Pharmacology: Open Access, 2015, 04, .	0.2	0
68	"Syn-effect―in asymmetric vinylogous alkylation of 3-[4-(N-phthalimide)-but-2-enoyl]oxazolidinone. Arkivoc, 2020, 2020, 181-192.	0.5	0