
Ahmed Sharif

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3157599/publications.pdf Version: 2024-02-01

AHMED SHADIE

#	Article	lF	CITATIONS
1	Effect of Areca and Waste Nylon Fiber Hybridization on the Properties of Recycled Polypropylene Composites. Journal of Natural Fibers, 2022, 19, 6625-6637.	1.7	6
2	Enhanced dielectric stability and coercivity of band gap tuned Ba–Al Co-doped bismuth ferrite: An experimental and DFT+U investigation. Ceramics International, 2022, 48, 3404-3416.	2.3	12
3	Effects of transition metal (Fe, Co & Ni) doping on structural, electronic and optical properties of CuO: DFTÂ+ÂU study. Chemical Physics, 2021, 545, 111160.	0.9	21
4	Characteristics of eutectic and near-eutectic Zn–Al alloys as high-temperature lead-free solders. Journal of Materials Science: Materials in Electronics, 2020, 31, 1691-1702.	1.1	9
5	Effect of Minor Addition of Ni on the Microstructure and Properties of Zn-Based High-Temperature Solder. Journal of Electronic Materials, 2020, 49, 3990-4001.	1.0	2
6	Role of hydrogen co-doping on opto-electronic behaviors of Na-H co-doped zinc oxide: a first principle study. Journal of Physics Communications, 2020, 4, 115002.	0.5	2
7	Evidence of superparamagnetism and improved electrical properties in Ba and Ta co-doped BiFeO3 ceramics. Journal of Alloys and Compounds, 2018, 735, 2584-2596.	2.8	46
8	Characteristics of Zn–Sb based high temperature solder alloy. Journal of Materials Science: Materials in Electronics, 2018, 29, 18417-18425.	1.1	4
9	Zn-Based Solders for High Temperature Electronic Application. , 2016, , .		3
10	Structural transition and its effect in La, Zr co-substituted mono-domain BiFeO3. Journal of Applied Physics, 2016, 120, 214106.	1.1	19
11	Mechanical and Thermal Properties of Zn-xMg Solder Alloys. Applied Mechanics and Materials, 2016, 860, 173-178.	0.2	2
12	Correlation of charge defects and morphology with magnetic and electrical properties of Sr and Ta codoped BiFeO3. Journal of Alloys and Compounds, 2016, 688, 1186-1194.	2.8	35
13	Study of off-eutectic Zn–xMg high temperature solder alloys. Journal of Materials Science: Materials in Electronics, 2016, 27, 8734-8744.	1.1	14
14	Study on the properties of Zn–xNi high temperature solder alloys. Journal of Materials Science: Materials in Electronics, 2016, 27, 3608-3618.	1.1	13
15	Review on advances in nanoscale microscopy in cement research. Micron, 2016, 80, 45-58.	1.1	10
16	Nanocharacterization of interface between natural fiber and polymer matrix: an overview. Composite Interfaces, 2016, 23, 105-123.	1.3	14
17	Structural, dielectric and magnetic properties of Ta-substituted Bi0.8La0.2FeO3 multiferroics. Journal of Alloys and Compounds, 2015, 622, 471-476.	2.8	16
18	Utilization of open pit burned household waste ash – a feasibility study in Dhaka. Waste Management and Research, 2014, 32, 397-405.	2.2	3

AHMED SHARIF

#	Article	IF	CITATIONS
19	Customized glass sealant for ceramic substrates for high temperature electronic application. Microelectronics Reliability, 2014, 54, 2905-2910.	0.9	18
20	Effect of micron size Ni particle addition in Sn–8Zn–3Bi lead-free solder alloy on the microstructure, thermal and mechanical properties. Journal of Alloys and Compounds, 2014, 585, 32-39.	2.8	59
21	Transient liquid phase Ag-based solder technology for high-temperature packaging applications. Journal of Alloys and Compounds, 2014, 587, 365-368.	2.8	72
22	Pb-Free Glass Paste: A Metallization-Free Die-Attachment Solution for High-Temperature Application on Ceramic Substrates. Journal of Electronic Materials, 2013, 42, 2667-2676.	1.0	11
23	Electronic packages for high pressure applications: A dome-shaped cavity design. , 2013, , .		0
24	Ceramic — Ceramic joining using glass frit for high temperature application. , 2012, , .		1
25	Study of thin film metallization adhesion in ceramic multichip module. , 2012, , .		2
26	Influence of SrTiO3 nano-particles on the microstructure and shear strength of Sn–Ag–Cu solder on Au/Ni metallized Cu pads. Journal of Alloys and Compounds, 2011, 509, 1885-1892.	2.8	66
27	Influence of Ag micro-particle additions on the microstructure, hardness and tensile properties of Sn–9Zn binary eutectic solder alloy. Microelectronics Reliability, 2010, 50, 1134-1141.	0.9	46
28	Effect of nano Al2O3 additions on the microstructure, hardness and shear strength of eutectic Sn–9Zn solder on Au/Ni metallized Cu pads. Microelectronics Reliability, 2010, 50, 2051-2058.	0.9	36
29	Investigation of small Sn–3.5Ag–0.5Cu additions on the microstructure and properties of Sn–8Zn–3Bi solder on Au/Ni/Cu pads. Journal of Alloys and Compounds, 2010, 489, 678-684.	2.8	32
30	The influence of addition of Al nano-particles on the microstructure and shear strength of eutectic Sn–Ag–Cu solder on Au/Ni metallized Cu pads. Journal of Alloys and Compounds, 2010, 506, 216-223.	2.8	76
31	Effect of small Sn-Ag-Cu additions on structure and properties of Sn-Zn-Bi solder/BGA during as-soldered and as-aged conditions. , 2009, , .		0
32	Synthesis and characterization of indium doped cadmium sulfide nanoribbons. Journal Physics D: Applied Physics, 2009, 42, 035412.	1.3	6
33	Interfacial microstructure and shear strength of Ag nano particle doped Sn–9Zn solder in ball grid array packages. Microelectronics Reliability, 2009, 49, 746-753.	0.9	42
34	Effect of Ag micro-particles content on the mechanical strength of the interface formed between Sn–Zn binary solder and Au/Ni/Cu bond pads. Microelectronic Engineering, 2009, 86, 2086-2093.	1.1	19
35	Effect of small Sn–3.5Ag–0.5Cu additions on the structure and properties of Sn–9Zn solder in ball grid array packages. Microelectronic Engineering, 2009, 86, 2347-2353.	1.1	29
36	ZnSxSe1â^'x nanowire arrays with tunable optical properties grown on ZnS nanoribbon substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 739-745.	1.3	10

AHMED SHARIF

#	Article	IF	CITATIONS
37	Influence of small amount of Al and Cu on the microstructure, microhardness and tensile properties of Sn–9Zn binary eutectic solder alloy. Journal of Alloys and Compounds, 2009, 481, 167-172.	2.8	61
38	Effect of 3 wt.% Bi in Sn-Zn solder on the interfacial reaction with the Au/Ni metallization in microelectronic packaging. , 2008, , .		1
39	A study of Ag micro-particle reinforced Sn-Zn matrix composite solder. , 2008, , .		0
40	Effect of nano Ni additions on the structure and properties of Sn-9Zn and Sn-8Sn-3Bi solder in ball grid array packages. , 2008, , .		3
41	Effect of multiple reflows on mechanical strength of the interface formed between Sn–Zn–Bi solder and Au/Ni/Cu bond pad. Journal of Materials Research, 2007, 22, 40-45.	1.2	1
42	Investigation of interfacial reactions between Sn–Zn solder with electrolytic Ni and electroless Ni(P) metallization. Journal of Alloys and Compounds, 2007, 440, 117-121.	2.8	24
43	Retardation of spalling by the addition of Ag in Sn–Zn–Bi solder with the Au/Ni metallization. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 445-446, 686-690.	2.6	18
44	Effect of substrate metallization on interfacial reactions and reliability of Sn–Zn–Bi solder joints. Microelectronic Engineering, 2007, 84, 328-335.	1.1	40
45	Effect of 3 wt.% Bi in Sn-Zn solder on the interfacial reactions with the Au/Ni metallization. Electronics Manufacturing Technology Symposium (IEMT), IEEE/CPMT International, 2006, , .	0.0	0
46	Liquid and solid state interfacial reactions of Sn–Ag–Cu and Sn–In–Ag–Cu solders with Ni–P under bump metallization. Thin Solid Films, 2006, 504, 431-435.	0.8	30
47	Effect of reaction time on mechanical strength of the interface formed between the Sn-Zn(-Bi) solder and the Au/Ni/Cu bond pad. Journal of Electronic Materials, 2006, 35, 1812-1817.	1.0	13
48	The effect of curing on the performance of ACF bonded chipâ€onâ€flex assemblies after thermal ageing. Soldering and Surface Mount Technology, 2005, 17, 40-48.	0.9	40
49	Comparative Study of the Dissolution Kinetics of Electrolytic Ni and Electroless NiP Layers by Molten Sn3.5Ag Solder Alloy. Journal of Electronic Packaging, Transactions of the ASME, 2005, 127, 365-369.	1.2	4
50	Comparative study of interfacial reactions of Sn-Ag-Cu and Sn-Ag solders on Cu pads during reflow soldering. Journal of Electronic Materials, 2005, 34, 46-52.	1.0	22
51	Effect of volume in interfacial reaction between eutectic Sn-3.5% Ag-0.5% Cu solder and Cu metallization in microelectronic packaging. Journal of Electronic Materials, 2005, 34, 143-149.	1.0	88
52	Interfacial reactions of Sn-3.5% Ag and Sn-3.5% Ag-0.5% Cu solder with electroless Ni/Au metallization during multiple reflow cycles. Journal of Materials Science: Materials in Electronics, 2005, 16, 153-158.	1,1	14
53	Dissolution of electroless Ni metallization by lead-free solder alloys. Journal of Alloys and Compounds, 2005, 388, 75-82.	2.8	48
54	Effect of indium addition in Sn-rich solder on the dissolution of Cu metallization. Journal of Alloys and Compounds, 2005, 390, 67-73.	2.8	76

AHMED SHARIF

#	Article	IF	CITATIONS
55	Interfacial reactions on electrolytic Ni and electroless Ni(P) metallization with Sn–In–Ag–Cu solder. Journal of Alloys and Compounds, 2005, 393, 135-140.	2.8	23
56	Effect of 9wt.% in addition to Sn3.5Ag0.5Cu solder on the interfacial reaction with the Au/NiP metallization on Cu pads. Journal of Alloys and Compounds, 2005, 396, 217-223.	2.8	31
57	Interfacial reactions of Sn–Cu and Sn–Pb–Ag solder with Au/Ni during extended time reflow in ball grid array packages. Journal of Materials Research, 2004, 19, 2897-2904.	1.2	19
58	Dissolution kinetics of BCA Sn–Pb and Sn–Ag solders with Cu substrates during reflow. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 106, 126-131.	1.7	66
59	Effect of volume in interfacial reaction between eutectic Sn–Pb solder and Cu metallization in microelectronic packaging. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 106, 120-125.	1.7	57
60	Interfacial reactions of BGA Sn–3.5%Ag–0.5%Cu and Sn–3.5%Ag solders during high-temperature aging with Ni/Au metallization. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 113, 184-189.	1.7	46
61	Comparative study of the dissolution kinetics of electrolytic Ni and electroless Ni–P by the molten Sn3.5Ag0.5Cu solder alloy. Microelectronics Reliability, 2003, 43, 2031-2037.	0.9	57
62	Study on wear properties of aluminium–silicon piston alloy. Journal of Materials Processing Technology, 2001, 118, 69-73.	3.1	129