Thomas N Sieber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3157548/publications.pdf

Version: 2024-02-01

61 papers 3,413 citations

35 h-index 56 g-index

62 all docs 62 docs citations

times ranked

62

2658 citing authors

#	Article	lF	CITATIONS
1	Investigating Host Preference of Root Endophytes of Three European Tree Species, with a Focus on Members of the Phialocephala fortinii—Acephala applanata Species Complex (PAC). Journal of Fungi (Basel, Switzerland), 2021, 7, 317.	3.5	7
2	Aqueous leaf extract of Ligustrum vulgare inhibits ascospore germination and mycelial growth of Hymenoscyphus fraxineus. Forest Pathology, 2021, 51, .	1.1	1
3	Does water availability influence the abundance of species of the Phialocephala fortinii s.l. – Acephala applanata complex (PAC) in roots of pubescent oak (Quercus pubescens) and Scots pine (Pinus) Tj ETQq1 1 0.78	34 3.1 64 rgB	Γ/ Ω werlock 1
4	Adaptation of subpopulations of the Norway spruce needle endophyte Lophodermium piceae to the temperature regime. Fungal Biology, 2019, 123, 887-894.	2.5	2
5	The endophyte <i>Allantophomopsis cytisporea</i> is associated with snow blight on <i>Calluna vulgaris</i> in the Alps—An effect of climate change?. Arctic, Antarctic, and Alpine Research, 2019, 51, 460-470.	1.1	4
6	Competitiveness of endophytic Phialocephala fortinii s.l. – Acephala applanata strains in Norway spruce roots. Fungal Biology, 2018, 122, 345-352.	2.5	7
7	Resilience of Phialocephala fortinii s.l. – Acephala applanata communities – Effects of disturbance and strain introduction. Fungal Ecology, 2018, 31, 19-28.	1.6	11
8	The Endophytic Mycobiome of European Ash and Sycamore Maple Leaves – Geographic Patterns, Host Specificity and Influence of Ash Dieback. Frontiers in Microbiology, 2018, 9, 2345.	3. 5	48
9	Ecological Factors Influencing Norway Spruce Regeneration on Nurse Logs in a Subalpine Virgin Forest. Forests, 2018, 9, 120.	2.1	12
10	Phylogenetic and phenotypic characterisation of Sirococcus castaneae comb. nov. (synonym Diplodina) Tj ETQq(0 0 o rgBT 2.5	/Overlock 10
11	Diversity of endophytic mycobiota of tropical tree Tectona grandis Linn.f.: Spatiotemporal and tissue type effects. Scientific Reports, 2017, 7, 3745.	3.3	45
12	Communities of fungal endophytes in leaves of Fraxinus ornus are highly diverse. Fungal Ecology, 2017, 29, 10-19.	1.6	36
13	Effects of endophytic fungi on the ash dieback pathogen. FEMS Microbiology Ecology, 2016, 92, fiw142.	2.7	53
14	Spatial and temporal dynamics in the Phialocephala fortinii s.l. – Acephala applanata species complex (PAC). Plant and Soil, 2016, 407, 231-241.	3.7	16
15	Dark septate endophytic fungi of native plants along an altitudinal gradient in the Brazilian Atlantic forest. Fungal Ecology, 2016, 20, 202-210.	1.6	43
16	Venturia orni sp. nov., a species distinct from Venturia fraxini, living in the leaves of Fraxinus ornus. Mycological Progress, 2016, 15, 1.	1.4	22
17	Nutritional niche overlap potentiates the use of endophytes in biocontrol of a tree disease. BioControl, 2015, 60, 655-667.	2.0	79
18	Control of pathogenic PAC strains by non-pathogenic PAC strains in planta does not correlate with higher competitiveness of non-pathogenic PAC strains ex planta. Mycological Progress, 2014, 13, 1241.	1.4	4

#	Article	IF	Citations
19	The complete life cycle of Petrakia echinata. Mycological Progress, 2013, 12, 427-435.	1.4	7
20	Mitigation of antagonistic effects on plant growth due to root coâ€colonization by dark septate endophytes and ectomycorrhiza. Environmental Microbiology Reports, 2013, 5, 892-898.	2.4	28
21	Resistance to Dutch Elm Disease Reduces Presence of Xylem Endophytic Fungi in Elms (Ulmus spp.). PLoS ONE, 2013, 8, e56987.	2.5	76
22	Season and Tissue Type Affect Fungal Endophyte Communities of the Indian Medicinal Plant Tinospora cordifolia More Strongly than Geographic Location. Microbial Ecology, 2012, 64, 388-398.	2.8	108
23	Do colonization by dark septate endophytes and elevated temperature affect pathogenicity of oomycetes?. FEMS Microbiology Ecology, 2012, 82, 157-168.	2.7	50
24	Host species and strain combination determine growth reduction of spruce and birch seedlings colonized by rootâ€associated dark septate endophytes. Environmental Microbiology, 2012, 14, 1064-1076.	3.8	53
25	Mycorrhiza Reduces Adverse Effects of Dark Septate Endophytes (DSE) on Growth of Conifers. PLoS ONE, 2012, 7, e42865.	2.5	55
26	Structure of Diversity in Dark Septate Endophytes: From Species to Genes. Forestry Sciences, 2011, , 3-30.	0.4	37
27	Negative effects on survival and performance of Norway spruce seedlings colonized by dark septate root endophytes are primarily isolateâ€dependent. Environmental Microbiology, 2011, 13, 2508-2517.	3.8	73
28	No biogeographical pattern for a rootâ€associated fungal species complex. Global Ecology and Biogeography, 2011, 20, 160-169.	5.8	74
29	Microsatellite-Based Quantification Method to Estimate Biomass of Endophytic Phialocephala Species in Strain Mixtures. Microbial Ecology, 2011, 61, 676-683.	2.8	10
30	Suitability of Quantitative Real-Time PCR To Estimate the Biomass of Fungal Root Endophytes. Applied and Environmental Microbiology, 2010, 76, 5764-5772.	3.1	66
31	Phylogeny of Phaeomollisia piceae gen. sp. nov.: a dark, septate, conifer-needle endophyte and its relationships to Phialocephala and Acephala. Mycological Research, 2009, 113, 207-221.	2.5	53
32	Cryptic speciation and community structure of Herpotrichia juniperi, the causal agent of brown felt blight of conifers. Mycological Research, 2009, 113, 887-896.	2.5	13
33	The ectomycorrhizal morphotype Pinirhiza sclerotia is formed by Acephala macrosclerotiorum sp. nov., a close relative of Phialocephala fortinii. Mycorrhiza, 2009, 19, 481-492.	2.8	34
34	Community structure of Phialocephala fortinii s. lat. in European tree nurseries, and assessment of the potential of the seedlings as dissemination vehicles. Mycological Research, 2008, 112, 650-662.	2.5	29
35	Dark septate endophytes (DSE) of the <i>Phialocephala fortinii</i> s.l.– <i>Acephala applanata</i> species complex in tree roots: classification, population biology, and ecology. Botany, 2008, 86, 1355-1369.	1.0	156
36	Assignment of species rank to six reproductively isolated cryptic species of the Phialocephala fortiniis.lAcephala applanataspecies complex. Mycologia, 2008, 100, 47-67.	1.9	70

#	Article	IF	CITATIONS
37	Suitability of methods for species recognition in the Phialocephala fortinii–Acephala applanata species complex using DNA analysis. Fungal Genetics and Biology, 2007, 44, 773-788.	2.1	61
38	Endophytic fungi in forest trees: are they mutualists?. Fungal Biology Reviews, 2007, 21, 75-89.	4.7	446
39	Population genetic analysis of Phialocephala fortinii s.l. and Acephala applanata in two undisturbed forests in Switzerland and evidence for new cryptic species. Fungal Genetics and Biology, 2006, 43, 410-421.	2.1	52
40	Molecular and phenotypic description of the widespread root symbiont <i>Acephala applanata</i> et sp. nov., formerly known as dark-septate endophyte Type 1. Mycologia, 2005, 97, 628-640.	1.9	37
41	Monitoring the spatial and temporal dynamics of a community of the treeâ€root endophyte Phialocephala fortinii s.l New Phytologist, 2005, 168, 651-660.	7.3	45
42	Characterization of Guignardia mangiferae isolated from tropical plants based on morphology, ISSR-PCR amplifications and ITS1–5.8S-ITS2 sequences. Mycological Research, 2004, 108, 45-52.	2.5	51
43	Evidence for subdivision of the root-endophyte Phialocephala fortinii into cryptic species and recombination within species. Fungal Genetics and Biology, 2004, 41, 676-687.	2.1	85
44	Latent infections of Fomes fomentarius in the xylem of European beech (Fagus sylvatica). Mycological Progress, 2003, 2, 141-148.	1.4	45
45	Development of single-copy RFLP markers for population genetic studies of Phialocephala fortinii and closely related taxa. Mycological Research, 2003, 107, 1332-1341.	2.5	39
46	Genetic variability among strains of Phialocephala fortinii and phylogenetic analysis of the genus Phialocephala based on rDNA ITS sequence comparisons. Canadian Journal of Botany, 2002, 80, 1239-1249.	1.1	61
47	Spatial distribution of dark septate endophytes in a confined forest plot. Mycological Research, 2002, 106, 832-840.	2.5	52
48	Endophytic mycobiota in bark of European beech (Fagus sylvatica) in the Apennines. Mycological Research, 2002, 106, 1343-1348.	2.5	42
49	Fungal Root Endophytes. , 2002, , 887-917.		78
50	Characterisation of dark septate endophytic fungi (DSE) using inter-simple-sequence-repeat-anchored polymerase chain reaction (ISSR-PCR) amplification. Mycological Research, 2001, 105, 24-32.	2.5	62
51	Colonisation of leaves and twigs of Rubus parviflorus and R. spectabilis by endophytic fungi in a reforestation site in British Columbia. Mycological Research, 2000, 104, 841-845.	2.5	15
52	Mycobiota in symptomless needles of Pinus mugo ssp. uncinata. Mycological Research, 1999, 103, 306-310.	2.5	40
53	Dark septate hyphomycetes in swiss conifer forest soils surveyed using Norway-spruce seedlings as bait. Soil Biology and Biochemistry, 1998, 30, 1069-1075.	8.8	28
54	The profusion of dark septate endophytic fungi in nonâ€ectomycorrhizal fine roots of forest trees and shrubs. New Phytologist, 1996, 132, 259-270.	7.3	117

#	Article	IF	CITATION
55	Pyrenochaeta ligni-putridi sp. nov., a new coelomycete associated with butt rot of Picea abies in Switzerland. Mycological Research, 1995, 99, 274-276.	2.5	18
56	Assemblages of endophytic fungi in coppice shoots of <i>Castanea sativa </i> . Mycologia, 1994, 86, 648-655.	1.9	58
57	Assemblages of Endophytic Fungi in Coppice Shoots of Castanea sativa. Mycologia, 1994, 86, 648.	1.9	35
58	An ecological study about assemblages of endophytic fungi in <i>Acer macrophyllum</i> in British Columbia: in search of candidate mycoherbicides. Canadian Journal of Botany, 1994, 72, 1397-1402.	1.1	23
59	Ecology, metabolite production, and substrate utilization in endophytic fungi. Natural Toxins, 1993, 1, 185-196.	1.0	347
60	Fungal associations of serially washed healthy non-mycorrhizal roots of Picea abies. Mycological Research, 1992, 96, 151-156.	2.5	63
61	Endophytic fungi in twigs of healthy and diseased Norway spruce and white fir. Mycological Research, 1989, 92, 322-326.	2.5	71