Stephan Menzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3157083/publications.pdf

Version: 2024-02-01

78 7,591 31 papers citations h-index

80 80 80 7619
all docs docs citations times ranked citing authors

75

g-index

#	Article	IF	CITATIONS
1	A Machine Learning Model for Predicting Fetal Hemoglobin Levels in Sickle Cell Disease Patients. Lecture Notes in Networks and Systems, 2022, , 79-91.	0.7	O
2	Genetic variants of <i>PKLR</i> are associated with acute pain in sickle cell disease. Blood Advances, 2022, 6, 3535-3540.	5.2	6
3	Fetalâ€haemoglobin enhancing genotype at BCL11A reduces HbA 2 levels in patients with sickle cell anaemia. EJHaem, 2021, 2, 459-461.	1.0	1
4	Genome wide association study of silent cerebral infarction in sickle cell disease (HbSS and HbSC). Haematologica, 2021, 106, 1770-1773.	3.5	10
5	F cell numbers are associated with an Xâ€linked genetic polymorphism and correlate with haematological parameters in patients with sickle cell disease. British Journal of Haematology, 2020, 191, 888-896.	2.5	10
6	Genetic Analysis of Patients With Sickle Cell Anemia and Stroke Before 4 Years of Age Suggest an Important Role for Apoliprotein E. Circulation Genomic and Precision Medicine, 2020, 13, 531-540.	3.6	8
7	Identifying genetic variants and pathways associated with extreme levels of fetal hemoglobin in sickle cell disease in Tanzania. BMC Medical Genetics, 2020, 21, 125.	2.1	9
8	Sickle cell disease in Sri Lanka: clinical and molecular basis and the unanswered questions about disease severity. Orphanet Journal of Rare Diseases, 2020, 15, 177.	2.7	6
9	Evaluation of oxidative stress-related genetic variants for predicting stroke in patients with sickle cell anemia. Journal of the Neurological Sciences, 2020, 414, 116839.	0.6	9
10	The effects of hydroxycarbamide on the plasma proteome of children with sickle cell anaemia. British Journal of Haematology, 2019, 186, 879-886.	2.5	7
11	Genetic Modifiers of Fetal Haemoglobin in Sickle Cell Disease. Molecular Diagnosis and Therapy, 2019, 23, 235-244.	3.8	32
12	A gain of function variant in PIEZO1 (E756del) and sickle cell disease. Haematologica, 2019, 104, e91-e93.	3.5	20
13	Proteomic analysis of plasma from children with sickle cell anemia and silent cerebral infarction. Haematologica, 2018, 103, 1136-1142.	3.5	22
14	g(HbF): a genetic model of fetal hemoglobin in sickle cell disease. Blood Advances, 2018, 2, 235-239.	5.2	33
15	Prognostic factors of disease severity in infants with sickle cell anemia: A comprehensive longitudinal cohort study. American Journal of Hematology, 2018, 93, 1411-1419.	4.1	17
16	A survey of genetic fetal-haemoglobin modifiers in Nigerian patients with sickle cell anaemia. PLoS ONE, 2018, 13, e0197927.	2.5	18
17	Associations between environmental factors and hospital admissions for sickle cell disease. Haematologica, 2017, 102, 666-675.	3.5	29
18	Fetal Hemoglobin is Associated with Peripheral Oxygen Saturation in Sickle Cell Disease in Tanzania. EBioMedicine, 2017, 23, 146-149.	6.1	11

#	Article	IF	CITATIONS
19	Reduced rate of sickleâ€related complications in Brazilian patients carrying HbFâ€promoting alleles at the <i>BCL11A</i> and <i>HMIPâ€2</i> loci. British Journal of Haematology, 2016, 173, 456-460.	2.5	25
20	<scp>ASH</scp> 1L (a histone methyltransferase protein) is a novel candidate globin gene regulator revealed by genetic study of an English family with betaâ€thalassaemia unlinked to the betaâ€globin locus. British Journal of Haematology, 2016, 175, 525-530.	2.5	6
21	Genetic variants at HbFâ€modifier loci moderate anemia and leukocytosis in sickle cell disease in T anzania. American Journal of Hematology, 2015, 90, E1-4.	4.1	21
22	Response to hydroxyurea among <scp>K</scp> uwaiti patients with sickle cell disease and elevated baseline <scp>H</scp> b <scp>F</scp> levels. American Journal of Hematology, 2015, 90, E138-9.	4.1	15
23	Variantes genéticas asociadas con niveles de hemoglobina fetal muestran diversos orÃgenes étnicos en pacientes colombianos con anemia falciforme. Biomedica, 2015, 35, 437-43.	0.7	5
24	Genetic association of fetal-hemoglobin levels in individuals with sickle cell disease in Tanzania maps to conserved regulatory elements within the MYB core enhancer. BMC Medical Genetics, 2015, 16, 4.	2.1	24
25	Environmental determinants of severity in sickle cell disease. Haematologica, 2015, 100, 1108-1116.	3.5	90
26	Genome-wide association analyses based on whole-genome sequencing in Sardinia provide insights into regulation of hemoglobin levels. Nature Genetics, 2015, 47, 1264-1271.	21.4	66
27	Genome Wide Association Study of Fetal Hemoglobin in Sickle Cell Anemia in Tanzania. PLoS ONE, 2014, 9, e111464.	2.5	78
28	Global Genetic Architecture of an Erythroid Quantitative Trait Locus, <i>HMIP-2</i> . Annals of Human Genetics, 2014, 78, 434-451.	0.8	24
29	HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers. Journal of Clinical Investigation, 2014, 124, 1699-1710.	8.2	157
30	<scp>H</scp> b <scp>A</scp> ₂ levels in normal adults are influenced by two distinct genetic mechanisms. British Journal of Haematology, 2013, 160, 101-105.	2.5	32
31	The effect of Duffy antigen receptor for chemokines on severity in sickle cell disease. Haematologica, 2013, 98, e87-e89.	3. 5	12
32	Genetic regulation of fetal haemoglobin in inherited bone marrow failure syndromes. British Journal of Haematology, 2013, 162, 542-546.	2.5	21
33	HBS1L-MYB intergenic Variants Modulate Fetal Hemoglobin Via Long-Range MYB Enhancers. Blood, 2013, 122, 43-43.	1.4	1
34	Genetics of fetal hemoglobin in Tanzanian and British patients with sickle cell anemia. Blood, 2011, 117, 1390-1392.	1.4	104
35	Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach. Nature Genetics, 2011, 43, 295-301.	21.4	142
36	Multiple Loci Are Associated with White Blood Cell Phenotypes. PLoS Genetics, 2011, 7, e1002113.	3 . 5	106

#	Article	IF	Citations
37	Experimental Generation of SNP Haplotype Signatures in Patients with Sickle Cell Anaemia. PLoS ONE, 2010, 5, e13004.	2.5	9
38	A Twins Heritability Study on Alpha Hemoglobin Stabilizing Protein (AHSP) Expression Variability. Twin Research and Human Genetics, 2010, 13, 567-572.	0.6	3
39	Association of sickle avascular necrosis with bone morphogenic protein 6. Annals of Hematology, 2009, 88, 803-805.	1.8	25
40	Ethnic differences in F cell levels in Jamaica: a potential tool for identifying new genetic loci controlling fetal haemoglobin. British Journal of Haematology, 2009, 144, 954-960.	2.5	8
41	Discovering the genetics underlying foetal haemoglobin production in adults. British Journal of Haematology, 2009, 145, 455-467.	2.5	171
42	A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nature Genetics, 2009, 41, 1182-1190.	21.4	481
43	Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. Human Molecular Genetics, 2009, 18, R216-R223.	2.9	213
44	Genetic architecture of hemoglobin F control. Current Opinion in Hematology, 2009, 16, 179-186.	2.5	32
45	A novel variant on chromosome 7q22.3 associated with mean platelet volume, counts, and function. Blood, 2009, 113, 3831-3837.	1.4	117
46	Genetic Variation on Chromosome 6 Influences F Cell Levels in Healthy Individuals of African Descent and HbF Levels in Sickle Cell Patients. PLoS ONE, 2009, 4, e4218.	2.5	77
47	Hydroxyurea therapy lowers circulating DNA levels in sickle cell anemia. American Journal of Hematology, 2008, 83, 714-716.	4.1	18
48	Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11346-11351.	7.1	286
49	The HBS1L-MYB intergenic region on chromosome 6q23.3 influences erythrocyte, platelet, and monocyte counts in humans. Blood, 2007, 110, 3624-3626.	1.4	71
50	A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nature Genetics, 2007, 39, 1197-1199.	21.4	491
51	The linear effects ofα-thalassaemia, theUGT1A1andHMOX1polymorphisms on cholelithiasis in sickle cell disease. British Journal of Haematology, 2007, 138, 263-270.	2.5	77
52	Circulating DNA: a potential marker of sickle cell crisis. British Journal of Haematology, 2007, 139, 331-336.	2.5	19
53	cMYB is involved in the regulation of fetal hemoglobin production in adults. Blood, 2006, 108, 1077-1083.	1.4	163
54	<i>α</i> â€Haemoglobin stabilising protein is a quantitative trait gene that modifies the phenotype of <i>β</i> â€thalassaemia. British Journal of Haematology, 2006, 133, 675-682.	2.5	79

#	Article	IF	CITATIONS
55	Two candidate genes for low platelet count identified in an Asian Indian kindred by genome-wide linkage analysis: glycoprotein IX and thrombopoietin. European Journal of Human Genetics, 2006, 14, 101-108.	2.8	15
56	Interaction Between Two Quantitative Trait Loci Affects Fetal Haemoglobin Expression. Annals of Human Genetics, 2005, 69, 707-714.	0.8	25
57	Polymorphisms in Type II SH2 Domain-Containing Inositol 5-Phosphatase (INPPL1, SHIP2) Are Associated With Physiological Abnormalities of the Metabolic Syndrome. Diabetes, 2004, 53, 1900-1904.	0.6	91
58	Evidence From a Large U.K. Family Collection That Genes Influencing Age of Onset of Type 2 Diabetes Map to Chromosome 12p and to the MODY3/NIDDM2 Locus on 12q24. Diabetes, 2004, 53, 855-860.	0.6	41
59	Quantitative trait locus on chromosome 8q influences the switch from fetal to adult hemoglobin. Blood, 2004, 104, 2184-2186.	1.4	59
60	Association and Haplotype Analysis of the Insulin-Degrading Enzyme (IDE) Gene, a Strong Positional and Biological Candidate for Type 2 Diabetes Susceptibility. Diabetes, 2003, 52, 1300-1305.	0.6	52
61	Young-Onset Type 2 Diabetes Families Are the Major Contributors to Genetic Loci in the Diabetes UK Warren 2 Genome Scan and Identify Putative Novel Loci on Chromosomes 8q21, 21q22, and 22q11. Diabetes, 2003, 52, 1857-1863.	0.6	43
62	A Genome-Wide Scan in Families With Maturity-Onset Diabetes of the Young: Evidence for Further Genetic Heterogeneity. Diabetes, 2003, 52, 872-881.	0.6	62
63	Evidence for Linkage of Stature to Chromosome 3p26 in a Large U.K. Family Data Set Ascertained for Type 2 Diabetes. American Journal of Human Genetics, 2002, 70, 543-546.	6.2	53
64	Genetic and Molecular Analyses of Complex Metabolic Disorders: Genetic Linkage. Annals of the New York Academy of Sciences, 2002, 967, 249-257.	3.8	18
65	A Genomewide Scan for Loci Predisposing to Type 2 Diabetes in a U.K. Population (The Diabetes UK) Tj ETQq1 Locus on Chromosome 1q. American Journal of Human Genetics, 2001, 69, 553-569.	1 0.784314 6.2	
66	Studies of Association between the Gene for Calpain-10 and Type 2 Diabetes Mellitus in the United Kingdom. American Journal of Human Genetics, 2001, 69, 544-552.	6.2	171
67	The genetics of type 2 diabetes. British Journal of Clinical Pharmacology, 2001, 51, 195-199.	2.4	24
68	No Evidence for Linkage at Candidate Type 2 Diabetes Susceptibility Loci on Chromosomes 12 and 20 in United Kingdom Caucasians. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 853-857.	3.6	17
69	No Evidence for Linkage at Candidate Type 2 Diabetes Susceptibility Loci on Chromosomes 12 and 20 in United Kingdom Caucasians. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 853-857.	3.6	6
70	A low renal threshold for glucose in diabetic patients with a mutation in the hepatocyte nuclear factor- $1\hat{l}$ ± (HNF- $1\hat{l}$ ±) gene., 1998, 15, 816-820.		109
71	A genome–wide search for human non–insulin–dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nature Genetics, 1996, 13, 161-166.	21.4	580
72	Mutations in the hepatocyte nuclear factor- $1\hat{l}$ ± gene in maturity-onset diabetes of the young (MODY3). Nature, 1996, 384, 455-458.	27.8	1,240

#	Article	IF	CITATIONS
73	Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1). Nature, 1996, 384, 458-460.	27.8	1,114
74	Searching for NIDDM susceptibility genes: studies of genes with triplet repeats expressed in skeletal muscle. Diabetologia, 1996, 39, 725-730.	6.3	0
75	Localization of MODY3 to a 5-cM region of human chromosome 12. Diabetes, 1995, 44, 1408-1413.	0.6	12
76	Isolation of a cDNA clone encoding a KATP channel-like protein expressed in insulin-secreting cells, localization of the human gene to chromosome band 21q22.1, and linkage studies with NIDDM. Diabetes, 1995, 44, 592-596.	0.6	9
77	Localization of the Glucagon Receptor Gene to Human Chromosome Band 17q25. Genomics, 1994, 20, 327-328.	2.9	19
78	Localization of the Gene Encoding a Neutral Amino Acid Transporter-like Protein to Human Chromosome Band 19q13.3 and Characterization of a Simple Sequence Repeat DNA Polymorphism. Genomics, 1994, 23, 490-491.	2.9	13