Lola Lilensten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3156556/publications.pdf

Version: 2024-02-01

567281 642732 1,209 30 15 23 citations h-index g-index papers 30 30 30 955 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<i>In-situ</i> observations of a hierarchical twinning–detwinning process in stress-induced <i>α</i> [″] -martensite of Ti-12Mo alloy. Materials Research Letters, 2022, 10, 45-51.	8.7	20
2	Experimental investigation of the local environment and lattice distortion in refractory medium entropy alloys. Scripta Materialia, 2022, 211, 114532.	5.2	1
3	Enhanced creep performance in a polycrystalline superalloy driven by atomic-scale phase transformation along planar faults. Acta Materialia, 2021, 202, 232-242.	7.9	29
4	Partitioning of Solutes at Crystal Defects in Borides After Creep and Annealing in a Polycrystalline Superalloy. Jom, 2021, 73, 2293-2302.	1.9	3
5	Accommodation mechanisms in strain-transformable titanium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141437.	5.6	24
6	On the transformation pathways in TRIP/TWIP Ti–12Mo alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141672.	5.6	32
7	Strain-hardenability of new strengthened TRIP/TWIP titanium alloys. MATEC Web of Conferences, 2020, 321, 11056.	0.2	O
8	From single phase to dual-phase TRIP-TWIP titanium alloys: Design approach and properties. Materialia, 2020, 12, 100700.	2.7	28
9	Ultrafine-Grained Two-Phase High-Entropy Alloy Microstructures Obtained via Recrystallization: Mechanical Properties. Frontiers in Materials, 2020, 7, .	2.4	4
10	Nanoscale compositional fluctuations enabled by dynamic strain-induced austenite reversion in a Mn-rich duplex steel. Scripta Materialia, 2020, 181, 101-107.	5.2	7
11	New approach for FIB-preparation of atom probe specimens for aluminum alloys. PLoS ONE, 2020, 15, e0231179.	2.5	26
12	Design and development of a dual-phase TRIP-TWIP alloy for enhanced mechanical properties. MATEC Web of Conferences, 2020, 321, 11014.	0.2	1
13	New approach for FIB-preparation of atom probe specimens for aluminum alloys. , 2020, 15, e0231179.		O
14	New approach for FIB-preparation of atom probe specimens for aluminum alloys., 2020, 15, e0231179.		0
15	New approach for FIB-preparation of atom probe specimens for aluminum alloys., 2020, 15, e0231179.		O
16	New approach for FIB-preparation of atom probe specimens for aluminum alloys., 2020, 15, e0231179.		0
17	New approach for FIB-preparation of atom probe specimens for aluminum alloys., 2020, 15, e0231179.		O
18	New approach for FIB-preparation of atom probe specimens for aluminum alloys. , 2020, 15, e0231179.		0

#	Article	IF	CITATION
19	Deformation of Borides in Nickel-based Superalloys: a Study of Segregation at Dislocations. Microscopy and Microanalysis, 2019, 25, 2538-2539.	0.4	4
20	On the heterogeneous nature of deformation in a strain-transformable beta metastable Ti-V-Cr-Al alloy. Acta Materialia, 2019, 162, 268-276.	7.9	90
21	Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms. Acta Materialia, 2018, 142, 131-141.	7.9	138
22	Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Materials Research Letters, 2017, 5, 110-116.	8.7	153
23	Influence of High-Pressure Torsion on the Microstructure and the Hardness of a Ti-Rich High-Entropy Alloy. Materials Science Forum, 2016, 879, 732-737.	0.3	4
24	Data on the impact of increasing the W amount on the mass density and compressive properties of Ni–W alloys processed by spark plasma sintering. Data in Brief, 2016, 7, 1405-1408.	1.0	9
25	Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 654, 30-38.	5.6	146
26	Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions. Materials Characterization, 2016, 111, 106-113.	4.4	82
27	On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 645, 255-263.	5.6	189
28	Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy. Materials Characterization, 2015, 108, 1-7.	4.4	84
29	New structure in refractory high-entropy alloys. Materials Letters, 2014, 132, 123-125.	2.6	95
30	Kinetic study on lithium-aluminosilicate (LAS) glass-ceramics containing MgO and ZnO. Ceramics International, 2014, 40, 11657-11661.	4.8	40