
Jaume Sastre-Garriga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3156281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurology, The, 2016, 15, 292-303.	10.2	679
2	Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain, 2015, 138, 1863-1874.	7.6	403
3	Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurology, The, 2017, 16, 797-812.	10.2	397
4	Do oligoclonal bands add information to MRI in first attacks of multiple sclerosis?. Neurology, 2008, 70, 1079-1083.	1.1	317
5	2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurology, The, 2021, 20, 653-670.	10.2	302
6	Deep gray matter volume loss drives disability worsening in multiple sclerosis. Annals of Neurology, 2018, 83, 210-222.	5.3	295
7	Progression of regional grey matter atrophy in multiple sclerosis. Brain, 2018, 141, 1665-1677.	7.6	269
8	Brain atrophy and lesion load predict long term disability in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1082-1091.	1.9	267
9	Baseline MRI predicts future attacks and disability in clinically isolated syndromes. Neurology, 2006, 67, 968-972.	1.1	253
10	Treatment of multiple sclerosis — success from bench to bedside. Nature Reviews Neurology, 2019, 15, 53-58.	10.1	239
11	Measures in the first year of therapy predict the response to interferon β in MS. Multiple Sclerosis Journal, 2009, 15, 848-853.	3.0	215
12	Brainstem lesions in clinically isolated syndromes. Neurology, 2010, 75, 1933-1938.	1.1	164
13	Regional Gray Matter Atrophy in Early Primary Progressive Multiple Sclerosis. Archives of Neurology, 2006, 63, 1175.	4.5	157
14	The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nature Reviews Neurology, 2018, 14, 199-213.	10.1	157
15	MAGNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice. Nature Reviews Neurology, 2020, 16, 171-182.	10.1	150
16	Grey and white matter volume changes in early primary progressive multiple sclerosis: a longitudinal study. Brain, 2005, 128, 1454-1460.	7.6	135
17	Pharmacological management of spasticity in multiple sclerosis: Systematic review and consensus paper. Multiple Sclerosis Journal, 2016, 22, 1386-1396.	3.0	118
18	Assessing treatment outcomes in multiple sclerosis trials and in the clinical setting. Nature Reviews Neurology, 2018, 14, 75-93.	10.1	115

#	Article	IF	CITATIONS
19	A Single, Early Magnetic Resonance Imaging Study in the Diagnosis of Multiple Sclerosis. Archives of Neurology, 2009, 66, 587-92.	4.5	114
20	COVIDâ€19 in multiple sclerosis patients: susceptibility, severity risk factors and serological response. European Journal of Neurology, 2021, 28, 3384-3395.	3.3	111
21	Metabolite Changes in Normal-Appearing Gray and White Matter Are Linked With Disability in Early Primary Progressive Multiple Sclerosis. Archives of Neurology, 2005, 62, 569.	4.5	109
22	Localized grey matter atrophy in multiple sclerosis: A meta-analysis of voxel-based morphometry studies and associations with functional disability. Neuroscience and Biobehavioral Reviews, 2013, 37, 819-830.	6.1	102
23	Predicting progression in primary progressive multiple sclerosis: A 10â€year multicenter study. Annals of Neurology, 2008, 63, 790-793.	5.3	101
24	Clinical, paraclinical and serological findings in Susac syndrome: an international multicenter study. Journal of Neuroinflammation, 2014, 11, 46.	7.2	100
25	The value of oligoclonal bands in the multiple sclerosis diagnostic criteria. Brain, 2018, 141, 1075-1084.	7.6	98
26	A single-center, randomized, double-blind, placebo-controlled study of interferon beta-1b on primary progressive and transitional multiple sclerosis. Multiple Sclerosis Journal, 2009, 15, 1195-1205.	3.0	95
27	Magnetic resonance imaging correlates of physical disability in relapse onset multiple sclerosis of long disease duration. Multiple Sclerosis Journal, 2014, 20, 72-80.	3.0	95
28	A functional magnetic resonance proof of concept pilot trial of cognitive rehabilitation in multiple sclerosis Journal, 2011, 17, 457-467.	3.0	93
29	Early brain pseudoatrophy while on natalizumab therapy is due to white matter volume changes. Multiple Sclerosis Journal, 2013, 19, 1175-1181.	3.0	93
30	The hippocampus in multiple sclerosis. Lancet Neurology, The, 2018, 17, 918-926.	10.2	90
31	Unraveling treatment response in multiple sclerosis. Neurology, 2019, 92, 180-192.	1.1	88
32	Clinical impact of early brain atrophy in clinically isolated syndromes. Multiple Sclerosis Journal, 2013, 19, 1878-1886.	3.0	85
33	Neurofilament light chain level is a weak risk factor for the development of MS. Neurology, 2016, 87, 1076-1084.	1.1	85
34	Mapping the brain pathways of declarative verbal memory: Evidence from white matter lesions in the living human brain. Neurolmage, 2008, 42, 1237-1243.	4.2	82
35	THC and CBD oromucosal spray (Sativex [®]) in the management of spasticity associated with multiple sclerosis. Expert Review of Neurotherapeutics, 2011, 11, 627-637.	2.8	82
36	Grey and white matter atrophy in early clinical stages of primary progressive multiple sclerosis. NeuroImage, 2004, 22, 353-359.	4.2	80

#	Article	IF	CITATIONS
37	Spinal cord lesions: A modest contributor to diagnosis in clinically isolated syndromes but a relevant prognostic factor. Multiple Sclerosis Journal, 2018, 24, 301-312.	3.0	79
38	Longitudinal Assessment of Multiple Sclerosis with the Brainâ€Age Paradigm. Annals of Neurology, 2020, 88, 93-105.	5.3	79
39	The HLA locus and multiple sclerosis in Spain. Role in disease susceptibility, clinical course and response to interferon-β. Journal of Neuroimmunology, 2002, 130, 194-201.	2.3	78
40	Epidemiology of NMOSD in Catalonia: Influence of the new 2015 criteria in incidence and prevalence estimates. Multiple Sclerosis Journal, 2018, 24, 1843-1851.	3.0	77
41	Normal-Appearing Brain T1 Relaxation Time Predicts Disability in Early Primary Progressive Multiple Sclerosis. Archives of Neurology, 2007, 64, 411.	4.5	71
42	Metabolite changes in early relapsing–remitting multiple sclerosis. Journal of Neurology, 2006, 253, 224-230.	3.6	68
43	Value of 3T Susceptibility-Weighted Imaging in the Diagnosis of Multiple Sclerosis. American Journal of Neuroradiology, 2020, 41, 1001-1008.	2.4	68
44	A missense <i>HTRA1</i> mutation expands CARASIL syndrome to the Caucasian population. Neurology, 2010, 75, 2033-2035.	1.1	66
45	Brain Atrophy in Multiple Sclerosis. Neuroimaging Clinics of North America, 2017, 27, 289-300.	1.0	64
46	Abnormalities in normal appearing tissues in early primary progressive multiple sclerosis and their relation to disability: a tissue specific magnetisation transfer study. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 77, 40-45.	1.9	63
47	Cord atrophy separates early primary progressive and relapsing remitting multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 77, 1036-1039.	1.9	63
48	Multiple sclerosis management during the COVID-19 pandemic. Multiple Sclerosis Journal, 2020, 26, 1163-1171.	3.0	63
49	ls inflammation important in early PPMS? a longitudinal MRI study. Journal of Neurology, Neurosurgery and Psychiatry, 2005, 76, 1255-1258.	1.9	62
50	Disability progression markers over 6–12 years in interferon-β-treated multiple sclerosis patients. Multiple Sclerosis Journal, 2018, 24, 322-330.	3.0	60
51	Long-term clinical outcome of primary progressive MS: Predictive value of clinical and MRI data. Neurology, 2005, 65, 633-635.	1.1	59
52	Magnetisation transfer ratio in the normal appearing white matter predicts progression of disability over 1 year in early primary progressive multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 1076-1082.	1.9	58
53	Large-scale, multicentre, quantitative MRI study of brain and cord damage in primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2008, 14, 455-464.	3.0	58
54	Multiple sclerosis registries in Europe – results of a systematic survey. Multiple Sclerosis Journal, 2014, 20, 1523-1532.	3.0	58

#	Article	IF	CITATIONS
55	Change in the clinical activity of multiple sclerosis after treatment switch for suboptimal response. European Journal of Neurology, 2012, 19, 899-904.	3.3	55
56	Brain atrophy in natalizumab-treated patients: A 3-year follow-up. Multiple Sclerosis Journal, 2015, 21, 749-756.	3.0	51
57	Precision medicine in multiple sclerosis. Current Opinion in Neurology, 2016, 29, 254-262.	3.6	51
58	C onversion to multiple sclerosis after a clinically isolated syndrome of the brainstem: cranial magnetic resonance imaging, cerebrospinal fl uid and neurophysiological findings. Multiple Sclerosis Journal, 2003, 9, 39-43.	3.0	49
59	Menarche, pregnancies, and breastfeeding do not modify long-term prognosis in multiple sclerosis. Neurology, 2019, 92, e1507-e1516.	1.1	49
60	The role of the cerebellum in multiple sclerosis—150 years after Charcot. Neuroscience and Biobehavioral Reviews, 2018, 89, 85-98.	6.1	48
61	Measurement of Whole-Brain and Gray Matter Atrophy in Multiple Sclerosis: Assessment with MR Imaging. Radiology, 2018, 288, 554-564.	7.3	47
62	Urgent challenges in quantification and interpretation of brain grey matter atrophy in individual MS patients using MRI. Neurolmage: Clinical, 2018, 19, 466-475.	2.7	47
63	Multiple sclerosis registries in Europe – An updated mapping survey. Multiple Sclerosis and Related Disorders, 2019, 27, 171-178.	2.0	47
64	APS and the brain. Lupus, 2003, 12, 877-882.	1.6	46
65	Mind the gap: from neurons to networks to outcomes in multiple sclerosis. Nature Reviews Neurology, 2021, 17, 173-184.	10.1	46
66	Interferon Beta-1b for the Treatment of Primary Progressive Multiple Sclerosis. Archives of Neurology, 2011, 68, 1421.	4.5	44
67	Significant clinical worsening after natalizumab withdrawal: Predictive factors. Multiple Sclerosis Journal, 2015, 21, 780-785.	3.0	43
68	Anticardiolipin antibodies are not a useful screening tool in a nonselected large group of patients with multiple sclerosis. Annals of Neurology, 2001, 49, 408-411.	5.3	42
69	Contribution of the symptomatic lesion in establishing MS diagnosis and prognosis. Neurology, 2016, 87, 1368-1374.	1.1	42
70	The long-term outcomes of CIS patients in the Barcelona inception cohort: Looking back to recognize aggressive MS. Multiple Sclerosis Journal, 2020, 26, 1658-1669.	3.0	41
71	Longitudinal fMRI studies: Exploring brain plasticity and repair in MS. Multiple Sclerosis Journal, 2016, 22, 269-278.	3.0	37
72	Mitral papillary fibroelastoma as a cause of cardiogenic embolic stroke: report of two cases and review of the literature. European Journal of Neurology, 2000, 7, 449-453.	3.3	36

#	Article	IF	CITATIONS
73	Evaluating the response to glatiramer acetate in relapsing–remitting multiple sclerosis (RRMS) patients. Multiple Sclerosis Journal, 2014, 20, 1602-1608.	3.0	36
74	Optical coherence tomography in multiple sclerosis: A 3â€year prospective multicenter study. Annals of Clinical and Translational Neurology, 2021, 8, 2235-2251.	3.7	36
75	Plasma cerebrosterol and magnetic resonance imaging measures in multiple sclerosis. Clinical Neurology and Neurosurgery, 2006, 108, 456-460.	1.4	35
76	Primary progressive multiple sclerosis diagnostic criteria: a reappraisal. Multiple Sclerosis Journal, 2009, 15, 1459-1465.	3.0	35
77	Effect of Changes in MS Diagnostic Criteria Over 25 Years on Time to Treatment and Prognosis in Patients With Clinically Isolated Syndrome. Neurology, 2021, 97, e1641-e1652.	1.1	35
78	Treating relapsing–remitting multiple sclerosis: therapy effects on brain atrophy. Journal of Neurology, 2015, 262, 2617-2626.	3.6	34
79	Transient Ischaemic Attack: A Common Initial Manifestation of Cardiac Myxomas. European Neurology, 2001, 45, 165-170.	1.4	32
80	Specificity of Barkhof Criteria in Predicting Conversion to Multiple Sclerosis When Applied to Clinically Isolated Brainstem Syndromes. Archives of Neurology, 2004, 61, 222.	4.5	32
81	Variations in chemokine receptor and cytokine expression during pregnancy in multiple sclerosis patients. Multiple Sclerosis Journal, 2006, 12, 421-427.	3.0	32
82	Brain volumetry counterparts of cognitive impairment in patients with multiple sclerosis. Journal of the Neurological Sciences, 2009, 282, 120-124.	0.6	32
83	Optic Nerve Topography in Multiple Sclerosis Diagnosis. Neurology, 2021, 96, e482-e490.	1.1	32
84	Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling. NeuroImage: Clinical, 2015, 9, 640-647.	2.7	31
85	Clinical impact of intravenous methylprednisolone in attacks of multiple sclerosis. Multiple Sclerosis Journal, 2004, 10, 413-416.	3.0	30
86	Increase in the prevalence of multiple sclerosis over a 17-year period in Osona, Catalonia, Spain. Multiple Sclerosis Journal, 2013, 19, 245-248.	3.0	29
87	Predictive value of early brain atrophy on response in patients treated with interferon β. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e132.	6.0	28
88	Association of Gray Matter Atrophy Patterns With Clinical Phenotype and Progression in Multiple Sclerosis. Neurology, 2021, 96, e1561-e1573.	1.1	28
89	Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study. Neurolmage, 2017, 163, 106-114.	4.2	27
90	Lesion topographies in multiple sclerosis diagnosis. Neurology, 2017, 89, 2351-2356.	1.1	27

#	Article	IF	CITATIONS
91	Patient and caregiver involvement in the formulation of guideline questions: findings from the European Academy of Neurology guideline on palliative care of people with severe multiple sclerosis. European Journal of Neurology, 2019, 26, 41-50.	3.3	27
92	Ratio of T1-Weighted to T2-Weighted Signal Intensity as a Measure of Tissue Integrity: Comparison with Magnetization Transfer Ratio in Patients with Multiple Sclerosis. American Journal of Neuroradiology, 2020, 41, 461-463.	2.4	27
93	Keeping standards of multiple sclerosis care through the COVID-19 pandemic. Multiple Sclerosis Journal, 2020, 26, 1153-1156.	3.0	24
94	Risk Acceptance in Multiple Sclerosis Patients on Natalizumab Treatment. PLoS ONE, 2013, 8, e82796.	2.5	23
95	Lesion filling effect in regional brain volume estimations: a study in multiple sclerosis patients with low lesion load. Neuroradiology, 2016, 58, 467-474.	2.2	23
96	Myelopathy in seronegative Sjögren syndrome and/or primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2003, 9, 256-259.	3.0	22
97	Using the WHOQOL-DIS to Measure Quality of Life in Persons with Physical Disabilities Caused by Neurodegenerative Disorders. Neurodegenerative Diseases, 2011, 8, 178-186.	1.4	21
98	Assess, compare and enhance the status of Persons with Multiple Sclerosis (MS) in Europe: a European Register for MS. Acta Neurologica Scandinavica, 2012, 126, 24-30.	2.1	21
99	Preliminary validation study of the Spanish version of the satisfaction with life scale in persons with multiple sclerosis. Disability and Rehabilitation, 2014, 36, 1001-1005.	1.8	21
100	Brain Volume Loss During the First Year of Interferonâ€Beta Treatment in Multiple Sclerosis: Baseline Inflammation and Regional Brain Volume Dynamics. Journal of Neuroimaging, 2016, 26, 532-538.	2.0	21
101	Grey matter atrophy is associated with disability increase in natalizumab-treated patients. Multiple Sclerosis Journal, 2017, 23, 556-566.	3.0	21
102	Decreased MMP-9 production in primary progressive multiple sclerosis patients. Multiple Sclerosis Journal, 2004, 10, 376-380.	3.0	20
103	Manual and automated tissue segmentation confirm the impact of thalamus atrophy on cognition in multiple sclerosis: A multicenter study. NeuroImage: Clinical, 2021, 29, 102549.	2.7	20
104	The frequency and characteristics of MS misdiagnosis in patients referred to the multiple sclerosis centre of Catalonia. Multiple Sclerosis Journal, 2021, 27, 913-921.	3.0	20
105	Clinical features of CIS of the brainstem/cerebellum of the kind seen in MS. Journal of Neurology, 2010, 257, 742-746.	3.6	19
106	Natalizumab discontinuation after PML risk stratification: outcome from a shared and informed decision. Multiple Sclerosis Journal, 2012, 18, 1193-1196.	3.0	19
107	Unconventional therapy in multiple sclerosis. Multiple Sclerosis Journal, 2003, 9, 320-322.	3.0	18
108	An uncommon first manifestation of multiple sclerosis: Tako-Tsubo cardiomyopathy. Multiple Sclerosis Journal, 2016, 22, 842-846.	3.0	18

#	Article	IF	CITATIONS
109	Diagnosis of multiple sclerosis: a multicentre study to compare revised McDonald-2010 and Filippi-2010 criteria. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 316-318.	1.9	18
110	Risk knowledge of people with relapsing-remitting multiple sclerosis – Results of an international survey. PLoS ONE, 2018, 13, e0208004.	2.5	18
111	Very early scans for demonstrating dissemination in time in multiple sclerosis. Multiple Sclerosis Journal, 2008, 14, 631-635.	3.0	17
112	Cervical Cord Atrophy and Long-Term Disease Progression in Patients with Primary-Progressive Multiple Sclerosis. American Journal of Neuroradiology, 2018, 39, 399-404.	2.4	17
113	Humoral and Cellular Responses to SARS-CoV-2 in Convalescent COVID-19 Patients With Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, e1143.	6.0	17
114	Value of NMO-IgG determination at the time of presentation as CIS. Neurology, 2012, 78, 1608-1611.	1.1	16
115	Menopause does not modify disability trajectories in a longitudinal cohort of women with clinically isolated syndrome and multiple sclerosis followed from disease onset. European Journal of Neurology, 2022, 29, 1075-1081.	3.3	16
116	Scoring the 10â€year risk of ambulatory disability in multiple sclerosis: the RoAD score. European Journal of Neurology, 2021, 28, 2533-2542.	3.3	16
117	Lower motor neuron disease in a HIV-2 infected woman. Journal of Neurology, 2000, 247, 718-719.	3.6	15
118	Brain regional volume estimations with NeuroQuant and FIRST: a study in patients with a clinically isolated syndrome. Neuroradiology, 2019, 61, 667-674.	2.2	15
119	Simultaneous CMV and <i>Listeria</i> infection following alemtuzumab treatment for multiple sclerosis. Neurology, 2019, 92, 296-298.	1.1	15
120	CSF Chitinase 3–Like 2 Is Associated With Long-term Disability Progression in Patients With Progressive Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	15
121	Juxtacortical Lesions and Cortical Thinning in Multiple Sclerosis. American Journal of Neuroradiology, 2015, 36, 2270-2276.	2.4	14
122	Classic Block Design "Pseudoâ€â€Restingâ€State fMRI Changes After a Neurorehabilitation Program in Patients with Multiple Sclerosis. Journal of Neuroimaging, 2018, 28, 313-319.	2.0	14
123	Distinct influence of different vascular risk factors on white matter brain lesions in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 388-391.	1.9	14
124	Foveal changes in aquaporinâ€4 antibody seropositive neuromyelitis optica spectrum disorder are independent of optic neuritis and not overtly progressive. European Journal of Neurology, 2021, 28, 2280-2293.	3.3	14
125	EAN Guideline on Palliative Care of People with Severe, Progressive Multiple Sclerosis. Journal of Palliative Medicine, 2020, 23, 1426-1443.	1.1	13
126	Prioritizing progressive MS rehabilitation research: A call from the International Progressive MS Alliance. Multiple Sclerosis Journal, 2021, 27, 989-1001.	3.0	13

#	Article	IF	CITATIONS
127	T1/T2-weighted ratio in multiple sclerosis: A longitudinal study with clinical associations. NeuroImage: Clinical, 2022, 34, 102967.	2.7	13
128	Exploring in vivo multiple sclerosis brain microstructural damage through T1w/T2w ratio: a multicentre study. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 741-752.	1.9	13
129	Highlights from the 31st ECTRIMS congress – Barcelona 2015. Multiple Sclerosis Journal, 2016, 22, 7-10.	3.0	12
130	Cumulative Dose of Macrocyclic Gadolinium-Based Contrast Agent Improves Detection of Enhancing Lesions in Patients with Multiple Sclerosis. American Journal of Neuroradiology, 2017, 38, 1486-1493.	2.4	12
131	The kappa free light chain index and oligoclonal bands have a similar role in the McDonald criteria. Brain, 2022, 145, 3931-3942.	7.6	12
132	Development and pilot phase of a European MS register. Journal of Neurology, 2010, 257, 1620-1627.	3.6	11
133	Is humoral and cellular response to SARS-CoV-2 vaccine modified by DMT in patients with multiple sclerosis and other autoimmune diseases?. Multiple Sclerosis Journal, 2022, 28, 1138-1145.	3.0	11
134	Polyglandular autoimmune syndrome type II and multiple sclerosis. Journal of Neurology, 2001, 248, 330-331.	3.6	10
135	Should we systematically test patients with clinically isolated syndrome for auto-antibodies?. Multiple Sclerosis Journal, 2015, 21, 1802-1810.	3.0	10
136	A validation study of manual atrophy measures in patients with MultipleÂSclerosis. Neuroradiology, 2020, 62, 955-964.	2.2	10
137	CSF chitinase 3-like 1 is associated with iron rims in patients with a first demyelinating event. Multiple Sclerosis Journal, 2022, 28, 71-81.	3.0	10
138	Treatment response scoring systems to assess long-term prognosis in self-injectable DMTs relapsing–remitting multiple sclerosis patients. Journal of Neurology, 2022, 269, 452-459.	3.6	10
139	Drug-related demyelinating syndromes: understanding risk factors, pathophysiological mechanisms and magnetic resonance imaging findings. Multiple Sclerosis and Related Disorders, 2021, 55, 103146.	2.0	10
140	Measurement of Cortical Thickness and Volume of Subcortical Structures in Multiple Sclerosis: Agreement between 2D Spin-Echo and 3D MPRAGE T1-Weighted Images. American Journal of Neuroradiology, 2017, 38, 250-256.	2.4	9
141	Myasthenia gravis following alemtuzumab therapy for multiple sclerosis. Neurology, 2018, 91, 622-624.	1.1	9
142	Lesion location may predict disability in multiple sclerosis. Nature Reviews Neurology, 2010, 6, 648-649.	10.1	8
143	Idiopathic Inflammatory Demyelinating Diseases of the Brainstem. Seminars in Ultrasound, CT and MRI, 2013, 34, 123-130.	1.5	8
144	Onset-adjusted incidence of multiple sclerosis in the Girona province (Spain): Evidence of increasing risk in the south of Europe. Journal of the Neurological Sciences, 2015, 359, 146-150.	0.6	8

#	Article	IF	CITATIONS
145	Severe hypertriglyceridemia associated with teriflunomide in a patient with multiple sclerosis: A case report. Multiple Sclerosis Journal, 2018, 24, 1383-1385.	3.0	8
146	An Expert Patient Program as a Tool to Empower People With Multiple Sclerosis. Journal of Neuroscience Nursing, 2020, 52, 166-171.	1.1	8
147	Quantification of Cervical Cord Cross-Sectional Area: Which Acquisition, Vertebra Level, and Analysis Software? A Multicenter Repeatability Study on a Traveling Healthy Volunteer. Frontiers in Neurology, 2021, 12, 693333.	2.4	8
148	Serum neurofilament light chain levels predict long-term disability progression in patients with progressive multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 732-740.	1.9	8
149	Plasma levels of 15dâ€PCJ ₂ are not altered in multiple sclerosis. European Journal of Neurology, 2009, 16, 1197-1201.	3.3	7
150	Dimethyl fumarate is coming of age. Nature Reviews Neurology, 2016, 12, 436-437.	10.1	7
151	Oral contraceptives do not modify the risk of a second attack and disability accrual in a prospective cohort of women with a clinically isolated syndrome and early multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 950-957.	3.0	7
152	New treatment measurements for treatment effects on relapses and progression. Journal of the Neurological Sciences, 2008, 274, 80-83.	0.6	6
153	Brain atrophy 15 years after CIS: Baseline and follow-up clinico-radiological correlations. Multiple Sclerosis Journal, 2018, 24, 721-727.	3.0	6
154	Response to botulinum toxin in a case of rigid spine syndrome. Journal of Neurology, Neurosurgery and Psychiatry, 2001, 71, 564-565.	1.9	6
155	Clinically definite multiple sclerosis after radiological Schilder-like onset. Journal of Neurology, 2003, 250, 871-873.	3.6	5
156	Role of MRI criteria and OB for diagnosing multiple sclerosis in patients presenting with clinically isolated syndromes. Multiple Sclerosis Journal, 2009, 15, 407-408.	3.0	5
157	Leptomeningeal enhancement in Susac's syndrome and multiple sclerosis: Time to expect the unexpected?. Multiple Sclerosis Journal, 2016, 22, 975-976.	3.0	5
158	Comparison between gadolinium-enhanced 2D T1-weighted gradient-echo and spin-echo sequences in the detection of active multiple sclerosis lesions on 3.0T MRI. European Radiology, 2017, 27, 1361-1368.	4.5	5
159	Impact of COVID-19 pandemic on frequency of clinical visits, performance of MRI studies, and therapeutic choices in a multiple sclerosis referral centre. Journal of Neurology, 2022, 269, 1764-1772.	3.6	5
160	Predictive markers of disease evolution after a CIS in everyday practice. Journal of the Neurological Sciences, 2014, 343, 8-14.	0.6	4
161	The ACROSS study: Long-term efficacy of fingolimod in patients with relapsing–remitting multiple sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521732090795.	1.0	4
162	Multiple sclerosis is associated with higher comorbidity and health care resource use: A populationâ€based, case–control study in a western Mediterranean region. European Journal of Neurology, 2021, 28, 4124-4134.	3.3	4

#	Article	IF	CITATIONS
163	Diagnosis and trials of clinically isolated syndrome. Lancet Neurology, The, 2014, 13, 962-963.	10.2	3
164	Editorial. Multiple Sclerosis Journal, 2019, 25, 1335-1336.	3.0	3
165	The role of pontine lesion location in differentiating multiple sclerosis from vascular risk factor-related small vessel disease. Multiple Sclerosis Journal, 2021, 27, 968-972.	3.0	3
166	Development and evaluation of a manual segmentation protocol for deep grey matter in multiple sclerosis: Towards accelerated semi-automated references. NeuroImage: Clinical, 2021, 30, 102659.	2.7	3
167	Characterizing 1-year development of cervical cord atrophy across different MS phenotypes: A voxel-wise, multicentre analysis. Multiple Sclerosis Journal, 2022, 28, 885-899.	3.0	3
168	One step forward in the quest for evidence of the efficacy of cognitive rehabilitation in multiple sclerosis Journal, 2014, 20, 2-2.	3.0	2
169	Adding brain volume measures into response criteria in multiple sclerosis: the RÃo-4 score. Neuroradiology, 2021, 63, 1031-1041.	2.2	2
170	Prognosis of a second clinical event from baseline MRI in patients with a CIS: a multicenter study using a machine learning approach. Neuroradiology, 2022, 64, 1383-1390.	2.2	2
171	SWI as an Alternative to Contrast-Enhanced Imaging to Detect Acute MS Lesions. American Journal of Neuroradiology, 2022, 43, 534-539.	2.4	2
172	Assessment of 2D conventional and synthetic MRI in multiple sclerosis. Neuroradiology, 2022, , .	2.2	2
173	Clinical monitoring of multiple sclerosis should routinely include spinal cord imaging – Commentary. Multiple Sclerosis Journal, 2018, 24, 1539-1540.	3.0	1
174	Spinal cord grey matter atrophy in Multiple Sclerosis clinical practice. Neuroscience Informatics, 2022, 2, 100071.	4.5	1
175	Daclizumab to treat multiple sclerosis. , 0, , 399-404.		0
176	"Brain reserve―and "cognitive reserve―should always be taken into account when studying neurodegeneration – NO. Multiple Sclerosis Journal, 2018, 24, 576-577.	3.0	0
177	Can Cognitive training Reignite Compensatory Mechanisms in Advanced Multiple Sclerosis Patients? An Explorative Morphological Network Approach. Neuroscience, 2022, , .	2.3	0