Carlos A Peres

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3156120/carlos-a-peres-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26,945 387 152 92 h-index g-index citations papers 30,960 419 5.5 7.52 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
387	Effects of forest degradation on Amazonian ferns in a land-bridge island system as revealed by non-specialist inventories. <i>Ecological Solutions and Evidence</i> , 2022 , 3, e12123	2.1	
386	Assessing assemblage-wide mammal responses to different types of habitat modification in Amazonian forests <i>Scientific Reports</i> , 2022 , 12, 1797	4.9	1
385	Human-wildlife conflicts with crocodilians, cetaceans and otters in the tropics and subtropics <i>PeerJ</i> , 2022 , 9, e12688	3.1	O
384	Physical geography trumps legal protection in driving the perceived sustainability of game hunting in Amazonian local communities. <i>Journal for Nature Conservation</i> , 2022 , 67, 126175	2.3	1
383	Congruence of local ecological knowledge (LEK)-based methods and line-transect surveys in estimating wildlife abundance in tropical forests. <i>Methods in Ecology and Evolution</i> , 2022 , 13, 743-756	7.7	5
382	Carbon payments can cost-effectively improve logging sustainability in the Amazon <i>Journal of Environmental Management</i> , 2022 , 314, 115094	7.9	0
381	NEOTROPICAL FRESHWATER FISHES: A dataset of occurrence and abundance of freshwater fishes in the Neotropics <i>Ecology</i> , 2022 , e3713	4.6	
380	Hunting sustainability within two eastern Amazon Extractive Reserves. <i>Environmental Conservation</i> , 2022 , 49, 90-98	3.3	O
379	AMAZONIA CAMTRAP: A dataset of mammal, bird, and reptile species recorded with camera traps in the Amazon forest <i>Ecology</i> , 2022 , e3738	4.6	O
378	Reconciling biome-wide conservation of an apex carnivore with land-use economics in the increasingly threatened Pantanal wetlands. <i>Scientific Reports</i> , 2021 , 11, 22808	4.9	1
377	Wild meat consumption in tropical forests spares a significant carbon footprint from the livestock production sector. <i>Scientific Reports</i> , 2021 , 11, 19001	4.9	
376	Extensive aquatic subsidies lead to territorial breakdown and high density of an apex predator. <i>Ecology</i> , 2021 , e03543	4.6	2
375	Pollinator-dependent crops in Brazil yield nearly half of nutrients for humans and livestock feed. <i>Global Food Security</i> , 2021 , 31, 100587	8.3	1
374	Using Relict Species Area Relationships to Estimate the Conservation Value of Reservoir Islands to Improve Environmental Impact Assessments of Dams 2021 , 417-437		0
373	Community-based conservation with formal protection provides large collateral benefits to Amazonian migratory waterbirds. <i>PLoS ONE</i> , 2021 , 16, e0250022	3.7	1
372	Nominally protected buffer zones around tropical protected areas are as highly degraded as the wider unprotected countryside. <i>Biological Conservation</i> , 2021 , 256, 109068	6.2	0
371	Drivers of leafcutter ant populations and their inter-trophic relationships in Amazonian forest islands. <i>Ecosphere</i> , 2021 , 12, e03518	3.1	O

(2021-2021)

370	Functional biogeography of Neotropical moist forests: Traitfilimate relationships and assembly patterns of tree communities. <i>Global Ecology and Biogeography</i> , 2021 , 30, 1430-1446	6.1	2
369	Wild ungulate responses to anthropogenic land use: a comparative Pantropical analysis. <i>Mammal Review</i> , 2021 , 51, 528-539	5	2
368	Winner-Loser Species Replacements in Human-Modified Landscapes. <i>Trends in Ecology and Evolution</i> , 2021 , 36, 545-555	10.9	13
367	Land-use effects on mosquito biodiversity and potential arbovirus emergence in the Southern Amazon, Brazil. <i>Transboundary and Emerging Diseases</i> , 2021 ,	4.2	1
366	Tropical deforestation induces thresholds of reproductive viability and habitat suitability in Earth's largest eagles. <i>Scientific Reports</i> , 2021 , 11, 13048	4.9	2
365	Prey preferences of modern human hunter-gatherers. <i>Food Webs</i> , 2021 , 26, e00183	1.8	5
364	Habitat amount and ambient temperature dictate patterns of anuran diversity along a subtropical elevational gradient. <i>Diversity and Distributions</i> , 2021 , 27, 344-359	5	3
363	Determinants of population persistence and abundance of terrestrial and arboreal vertebrates stranded in tropical forest land-bridge islands. <i>Conservation Biology</i> , 2021 , 35, 870-883	6	6
362	Existing protected areas provide a poor safety-net for threatened Amazonian fish species. <i>Aquatic Conservation: Marine and Freshwater Ecosystems</i> , 2021 , 31, 1167-1189	2.6	9
361	Fisheries management influences phytoplankton biomass of Amazonian floodplain lakes. <i>Journal of Applied Ecology</i> , 2021 , 58, 731-743	5.8	3
360	Species-Area Relationships Induced by Forest Habitat Fragmentation Apply Even to Rarely Detected Organisms. <i>Tropical Conservation Science</i> , 2021 , 14, 194008292110173	1.4	
359	Brazil® Next Deforestation Frontiers. <i>Tropical Conservation Science</i> , 2021 , 14, 194008292110204	1.4	3
358	Forest area predicts all dimensions of small mammal and lizard diversity in Amazonian insular forest fragments. <i>Landscape Ecology</i> , 2021 , 36, 3401	4.3	3
357	Synergistic effects of habitat configuration and land-use intensity shape the structure of bird assemblages in human-modified landscapes across three major neotropical biomes. <i>Biodiversity and Conservation</i> , 2021 , 30, 3793	3.4	1
356	Wild Meat Is Still on the Menu: Progress in Wild Meat Research, Policy, and Practice from 2002 to 2020. <i>Annual Review of Environment and Resources</i> , 2021 , 46,	17.2	10
355	Avian extinctions induced by the oldest Amazonian hydropower mega dam: evidence from museum collections and sighting data spanning 172 years. <i>PeerJ</i> , 2021 , 9, e11979	3.1	Ο
354	Hunting pressure modulates the composition and size structure of terrestrial and arboreal vertebrates in Amazonian forests. <i>Biodiversity and Conservation</i> , 2021 , 30, 3613	3.4	3
353	Primate conservation: Lessons learned in the last 20 years can guide future efforts. <i>Evolutionary Anthropology</i> , 2021 , 30, 345-361	4.7	6

352	Setting priority conservation management regions to reverse rapid range decline of a key neotropical forest ungulate. <i>Global Ecology and Conservation</i> , 2021 , 31, e01796	2.8	0
351	Interacting elevational and latitudinal gradients determine bat diversity and distribution across the Neotropics. <i>Journal of Animal Ecology</i> , 2021 , 90, 2729-2743	4.7	O
350	Recovery of dung beetle assemblages in regenerating Caatinga dry forests following slash-and-burn agriculture. <i>Forest Ecology and Management</i> , 2021 , 496, 119423	3.9	1
349	Sustainable-use protected areas catalyze enhanced livelihoods in rural Amazonia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	5
348	Site and species contribution to Ediversity in terrestrial mammal communities: Evidence from multiple Neotropical forest sites. <i>Science of the Total Environment</i> , 2021 , 789, 147946	10.2	3
347	Intrinsic and extrinsic motivations governing prey choice by hunters in a post-war African forest-savannah macromosaic <i>PLoS ONE</i> , 2021 , 16, e0261198	3.7	O
346	Pollination ecosystem services: A comprehensive review of economic values, research funding and policy actions. <i>Food Security</i> , 2020 , 12, 1425-1442	6.7	41
345	Socioeconomic Drivers of Hunting Efficiency and Use of Space By Traditional Amazonians. <i>Human Ecology</i> , 2020 , 48, 307-315	2	3
344	Rapidly escalating threats to the biodiversity and ethnocultural capital of Brazilian Indigenous Lands. <i>Land Use Policy</i> , 2020 , 96, 104694	5.6	21
343	Biased-corrected richness estimates for the Amazonian tree flora. <i>Scientific Reports</i> , 2020 , 10, 10130	4.9	24
342	Resource co-management as a step towards gender equity in fisheries. <i>Ecological Economics</i> , 2020 , 176, 106709	5.6	10
34 ¹	Marked decline in forest-dependent small mammals following habitat loss and fragmentation in an Amazonian deforestation frontier. <i>PLoS ONE</i> , 2020 , 15, e0230209	3.7	14
340	Critical role and collapse of tropical mega-trees: A key global resource. <i>Advances in Ecological Research</i> , 2020 , 62, 253-294	4.6	10
339	The role of baseline suitability in assessing the impacts of land-use change on biodiversity. <i>Biological Conservation</i> , 2020 , 243, 108396	6.2	5
338	Forest type affects the capacity of Amazonian tree species to store carbon as woody biomass. <i>Forest Ecology and Management</i> , 2020 , 473, 118297	3.9	2
337	Optimizing small mammal surveys in Neotropical fragmented landscapes while accounting for potential sampling bias. <i>Mammalian Biology</i> , 2020 , 100, 81-90	1.6	1
336	Capitalizing on opportunities provided by pasture sudden death to enhance livestock sustainable management in Brazilian Amazonia. <i>Environmental Development</i> , 2020 , 33, 100499	4.1	8
335	High moon brightness and low ambient temperatures affect sloth predation by harpy eagles. <i>PeerJ</i> , 2020 , 8, e9756	3.1	3

334	Community-Based Management of Amazonian Biodiversity Assets 2020 , 99-111		4
333	Sampling design may obscure species relationships in landscape-scale field studies. <i>Ecography</i> , 2020 , 43, 107-118	6.5	9
332	Marked compositional changes in harvestmen assemblages in Amazonian forest islands induced by a mega dam. <i>Insect Conservation and Diversity</i> , 2020 , 13, 432-444	3.8	9
331	Indirect effects of habitat loss via habitat fragmentation: A cross-taxa analysis of forest-dependent species. <i>Biological Conservation</i> , 2020 , 241, 108368	6.2	32
330	Co-management of culturally important species: A tool to promote biodiversity conservation and human well-being. <i>People and Nature</i> , 2020 , 2, 61-81	5.9	28
329	Hantavirus antibodies among phyllostomid bats from the arc of deforestation in Southern Amazonia, Brazil. <i>Transboundary and Emerging Diseases</i> , 2020 , 67, 1045-1051	4.2	2
328	Divergent responses of plant reproductive strategies to chronic anthropogenic disturbance and aridity in the Caatinga dry forest. <i>Science of the Total Environment</i> , 2020 , 704, 135240	10.2	2
327	Effects of mammal defaunation on natural ecosystem services and human well being throughout the entire Neotropical realm. <i>Ecosystem Services</i> , 2020 , 45, 101173	6.1	11
326	Multi-scale mammal responses to agroforestry landscapes in the Brazilian Atlantic Forest: the conservation value of forest and traditional shade plantations. <i>Agroforestry Systems</i> , 2020 , 94, 2331-234	47	5
325	Harpy Eagle (Harpia harpyja) nest tree selection: Selective logging in Amazon forest threatens Earth's largest eagle. <i>Biological Conservation</i> , 2020 , 250, 108754	6.2	2
324	Mapping pervasive selective logging in the south-west Brazilian Amazon 2000🛭 019. <i>Environmental Research Letters</i> , 2020 , 15, 094057	6.2	6
323	Habitat determinants of golden-headed lion tamarin (Leontopithecus chrysomelas) occupancy of cacao agroforests: Gloomy conservation prospects for management intensification. <i>American Journal of Primatology</i> , 2020 , 82, e23179	2.5	1
322	Testing the keystone plant resource role of a flagship subtropical tree species (Araucaria angustifolia) in the Brazilian Atlantic Forest. <i>Ecological Indicators</i> , 2020 , 118, 106778	5.8	10
321	Warfare-induced mammal population declines in Southwestern Africa are mediated by species life history, habitat type and hunter preferences. <i>Scientific Reports</i> , 2020 , 10, 15428	4.9	14
320	NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics. <i>Ecology</i> , 2020 , 101, e03128	4.6	8
319	Extent, intensity and drivers of mammal defaunation: a continental-scale analysis across the Neotropics. <i>Scientific Reports</i> , 2020 , 10, 14750	4.9	24
318	Structure and Composition of Terra Firme and Seasonally Flooded VIzea Forests in the Western Brazilian Amazon. <i>Forests</i> , 2020 , 11, 1361	2.8	4
317	Habitat patch size and isolation drive the near-complete collapse of Amazonian dung beetle assemblages in a 30-year-old forest archipelago. <i>Biodiversity and Conservation</i> , 2020 , 29, 2419-2438	3.4	4

316	Wild dogs at stake: deforestation threatens the only Amazon endemic canid, the short-eared dog (). <i>Royal Society Open Science</i> , 2020 , 7, 190717	3.3	2
315	Regional scientific research benefits threatened-species conservation. <i>National Science Review</i> , 2019 , 6, 1076-1079	10.8	8
314	Rarity of monodominance in hyperdiverse Amazonian forests. <i>Scientific Reports</i> , 2019 , 9, 13822	4.9	19
313	Patch-scale biodiversity retention in fragmented landscapes: Reconciling the habitat amount hypothesis with the island biogeography theory. <i>Journal of Biogeography</i> , 2019 , 46, 621-632	4.1	27
312	Protecting forests at the expense of native grasslands: Land-use policy encourages open-habitat loss in the Brazilian cerrado biome. <i>Perspectives in Ecology and Conservation</i> , 2019 , 17, 26-31	3.5	21
311	The functional roles of mammals in ecosystems. <i>Journal of Mammalogy</i> , 2019 , 100, 942-964	1.8	44
310	Conservation performance of tropical protected areas: How important is management?. <i>Conservation Letters</i> , 2019 , 12, e12650	6.9	18
309	Matrix type and landscape attributes modulate avian taxonomic and functional spillover across habitat boundaries in the Brazilian Atlantic Forest. <i>Oikos</i> , 2019 , 128, 1600-1612	4	9
308	Climate change will reduce suitable Caatinga dry forest habitat for endemic plants with disproportionate impacts on specialized reproductive strategies. <i>PLoS ONE</i> , 2019 , 14, e0217028	3.7	26
307	Irreplaceable socioeconomic value of wild meat extraction to local food security in rural Amazonia. <i>Biological Conservation</i> , 2019 , 236, 171-179	6.2	18
306	Species distribution modeling reveals strongholds and potential reintroduction areas for the world's largest eagle. <i>PLoS ONE</i> , 2019 , 14, e0216323	3.7	14
305	NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics. <i>Ecology</i> , 2019 , 100, e02663	4.6	16
304	Habitat use of the ocelot () in Brazilian Amazon. <i>Ecology and Evolution</i> , 2019 , 9, 5049-5062	2.8	13
303	Detection of Ilheus virus in mosquitoes from southeast Amazon, Brazil. <i>Transactions of the Royal Society of Tropical Medicine and Hygiene</i> , 2019 , 113, 424-427	2	12
302	Brazil's policies stuck in the mud. <i>Science</i> , 2019 , 363, 1046	33.3	12
301	Prey availability and temporal partitioning modulate felid coexistence in Neotropical forests. <i>PLoS ONE</i> , 2019 , 14, e0213671	3.7	42
300	Population recovery, seasonal site fidelity, and daily activity of pirarucu (Arapaima spp.) in an Amazonian floodplain mosaic. <i>Freshwater Biology</i> , 2019 , 64, 1255-1264	3.1	13
299	Moving forward on the sampling efficiency of neotropical small mammals: insights from pitfall and camera trapping over traditional live trapping. <i>Mammal Research</i> , 2019 , 64, 445-454	1.8	5

(2018-2019)

298	Divergent flows of avian-mediated ecosystem services across forest-matrix interfaces in human-modified landscapes. <i>Landscape Ecology</i> , 2019 , 34, 879-894	4.3	15
297	Primate and ungulate responses to teak agroforestry in a southern Amazonian landscape. Mammalian Biology, 2019 , 96, 45-52	1.6	5
296	The paradoxical situation of the white-lipped peccary (Tayassu pecari) in the state of Mato Grosso, Brazil. <i>Perspectives in Ecology and Conservation</i> , 2019 , 17, 36-39	3.5	5
295	Brazil's indigenous lands under threat. <i>Science</i> , 2019 , 363, 592	33.3	28
294	Prospects for freshwater turtle population recovery are catalyzed by pan-Amazonian community-based management. <i>Biological Conservation</i> , 2019 , 233, 51-60	6.2	12
293	Rapid recovery of thermal environment after selective logging in the Amazon. <i>Agricultural and Forest Meteorology</i> , 2019 , 278, 107637	5.8	13
292	Co-declining mammaldung beetle faunas throughout the Atlantic Forest biome of South America. <i>Ecography</i> , 2019 , 42, 1803-1818	6.5	24
291	Arboreal ant abundance tracks primary productivity in an Amazonian whitewater river system. <i>Ecosphere</i> , 2019 , 10, e02902	3.1	4
29 0	Plant and Pollination Blindness: Risky Business for Human Food Security. <i>BioScience</i> , 2019 ,	5.7	1
289	Extinction filters mediate the global effects of habitat fragmentation on animals. <i>Science</i> , 2019 , 366, 1236-1239	33.3	86
288	Combining modeling tools to identify conservation priority areas: A case study of the last large-bodied avian frugivore in the Atlantic Forest. <i>Global Ecology and Conservation</i> , 2019 , 17, e00426	2.8	4
287	Instability of insular tree communities in an Amazonian mega-dam is driven by impaired recruitment and altered species composition. <i>Journal of Applied Ecology</i> , 2019 , 56, 779-791	5.8	11
286	The conservation value of human-modified landscapes for the world's primates. <i>Nature Communications</i> , 2019 , 10, 152	17.4	58
285	ATLANTIC-PRIMATES: a dataset of communities and occurrences of primates in the Atlantic Forests of South America. <i>Ecology</i> , 2019 , 100, e02525	4.6	28
284	Manioc losses by terrestrial vertebrates in western Brazilian Amazonia. <i>Journal of Wildlife Management</i> , 2018 , 82, 734-746	1.9	13
283	Local extinctions of obligate frugivores and patch size reduction disrupt the structure of seed dispersal networks. <i>Ecography</i> , 2018 , 41, 1899-1909	6.5	16
282	Ecological traits modulate bird species responses to forest fragmentation in an Amazonian anthropogenic archipelago. <i>Diversity and Distributions</i> , 2018 , 24, 387-402	5	25
281	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. <i>Scientific Reports</i> , 2018 , 8, 1003	4.9	78

280	Anthropogenic drivers of headwater and riparian forest loss and degradation in a highly fragmented southern Amazonian landscape. <i>Land Use Policy</i> , 2018 , 72, 354-363	5.6	17
279	Ecological correlates of mammal Ediversity in Amazonian land-bridge islands: from small- to large-bodied species. <i>Diversity and Distributions</i> , 2018 , 24, 1109-1120	5	9
278	Small mammal responses to Amazonian forest islands are modulated by their forest dependence. <i>Oecologia</i> , 2018 , 187, 191-204	2.9	24
277	Impacts of selective logging management on butterflies in the Amazon. <i>Biological Conservation</i> , 2018 , 225, 1-9	6.2	16
276	Economic Impacts of Payments for Environmental Services on Livelihoods of Agro-extractivist Communities in the Brazilian Amazon. <i>Ecological Economics</i> , 2018 , 152, 378-388	5.6	7
275	Achieving low-carbon cattle ranching in the Amazon: P asture sudden deathlas a window of opportunity. <i>Land Degradation and Development</i> , 2018 , 29, 3535-3543	4.4	7
274	Use of agroecosystem matrix habitats by mammalian carnivores (Carnivora): a global-scale analysis. <i>Mammal Review</i> , 2018 , 48, 312-327	5	60
273	Limiting global-mean temperature increase to 1.5-2 °C could reduce the incidence and spatial spread of dengue fever in Latin America. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 6243-6248	11.5	25
272	Coarse- and fine-scale patterns of distribution and habitat selection places an Amazonian floodplain curassow in double jeopardy. <i>PeerJ</i> , 2018 , 6, e4617	3.1	3
271	Seasonal dynamics of terrestrial vertebrate abundance between Amazonian flooded and unflooded forests. <i>PeerJ</i> , 2018 , 6, e5058	3.1	10
270	Urban waste disposal explains the distribution of Black Vultures () in an Amazonian metropolis: management implications for birdstrikes and urban planning. <i>PeerJ</i> , 2018 , 6, e5491	3.1	6
269	Unintended multispecies co-benefits of an Amazonian community-based conservation programme. <i>Nature Sustainability</i> , 2018 , 1, 650-656	22.1	34
268	Wish you were here: How defaunated is the Atlantic Forest biome of its medium- to large-bodied mammal fauna?. <i>PLoS ONE</i> , 2018 , 13, e0204515	3.7	45
267	Thresholds of riparian forest use by terrestrial mammals in a fragmented Amazonian deforestation frontier. <i>Biodiversity and Conservation</i> , 2018 , 27, 2815-2836	3.4	6
266	High mammal species turnover in forest patches immersed in biofuel plantations. <i>Biological Conservation</i> , 2017 , 210, 352-359	6.2	54
265	Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. <i>Science</i> , 2017 , 355, 925-931	33.3	280
264	Reproductive biology of the endangered wattled curassow (Crax globulosa; Galliformes: Cracidae) in the JurulRiver Basin, Western Brazilian Amazonia. <i>Journal of Natural History</i> , 2017 , 51, 677-687	0.5	3
263	Continental-scale patterns and climatic drivers of fruiting phenology: A quantitative Neotropical review. <i>Global and Planetary Change</i> , 2017 , 148, 227-241	4.2	65

(2016-2017)

262	The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. <i>Ecology and Evolution</i> , 2017 , 7, 145-188	2.8	101
261	Terrestrial mammal responses to habitat structure and quality of remnant riparian forests in an Amazonian cattle-ranching landscape. <i>Biological Conservation</i> , 2017 , 206, 283-292	6.2	42
260	Community-based population recovery of overexploited Amazonian wildlife. <i>Perspectives in Ecology and Conservation</i> , 2017 , 15, 266-270	3.5	36
259	Creation of forest edges has a global impact on forest vertebrates. <i>Nature</i> , 2017 , 551, 187-191	50.4	211
258	Enhancing sampling design in mist-net bat surveys by accounting for sample size optimization. <i>PLoS ONE</i> , 2017 , 12, e0174067	3.7	9
257	Woody lianas increase in dominance and maintain compositional integrity across an Amazonian dam-induced fragmented landscape. <i>PLoS ONE</i> , 2017 , 12, e0185527	3.7	11
256	Conservation performance of different conservation governance regimes in the Peruvian Amazon. <i>Scientific Reports</i> , 2017 , 7, 11318	4.9	83
255	Primate responses to anthropogenic habitat disturbance: A pantropical meta-analysis. <i>Biological Conservation</i> , 2017 , 215, 30-38	6.2	61
254	Non-random lizard extinctions in land-bridge Amazonian forest islands after 28 years of isolation. <i>Biological Conservation</i> , 2017 , 214, 55-65	6.2	17
253	Herpetofaunal responses to anthropogenic forest habitat modification across the neotropics: insights from partitioning Ediversity. <i>Biodiversity and Conservation</i> , 2017 , 26, 2877-2891	3.4	9
252	Do Community-Managed Forests Work? A Biodiversity Perspective. Land, 2017, 6, 22	3.5	27
251	After the epidemic: Zika virus projections for Latin America and the Caribbean. <i>PLoS Neglected Tropical Diseases</i> , 2017 , 11, e0006007	4.8	39
250	Measuring local depletion of terrestrial game vertebrates by central-place hunters in rural Amazonia. <i>PLoS ONE</i> , 2017 , 12, e0186653	3.7	20
249	Oil palm monoculture induces drastic erosion of an Amazonian forest mammal fauna. <i>PLoS ONE</i> , 2017 , 12, e0187650	3.7	36
248	Gamebird responses to anthropogenic forest fragmentation and degradation in a southern Amazonian landscape. <i>PeerJ</i> , 2017 , 5, e3442	3.1	13
247	Forest patch isolation drives local extinctions of Amazonian orchid bees in a 26 years old archipelago. <i>Biological Conservation</i> , 2017 , 214, 270-277	6.2	27
246	The numbers of the beast: Valuation of jaguar (Panthera onca) tourism and cattle depredation in the Brazilian Pantanal. <i>Global Ecology and Conservation</i> , 2017 , 11, 106-114	2.8	35
245	Description of the nest of two Thamnophilidae species in Brazilian Amazon. <i>Revista Brasileira De Ornitologia</i> , 2016 , 24, 83-85	0.2	3

244	Habitat fragmentation and the future structure of tree assemblages in a fragmented Atlantic forest landscape. <i>Plant Ecology</i> , 2016 , 217, 1129-1140	1.7	24
243	Too rare for non-timber resource harvest? Meso-scale composition and distribution of arborescent palms in an Amazonian sustainable-use forest. <i>Forest Ecology and Management</i> , 2016 , 377, 182-191	3.9	6
242	Flood pulse dynamics affects exploitation of both aquatic and terrestrial prey by Amazonian floodplain settlements. <i>Biological Conservation</i> , 2016 , 201, 129-136	6.2	27
241	Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. <i>Scientific Reports</i> , 2016 , 6, 31153	4.9	61
240	Community-based management induces rapid recovery of a high-value tropical freshwater fishery. <i>Scientific Reports</i> , 2016 , 6, 34745	4.9	79
239	Bushmeat hunting and extinction risk to the world's mammals. <i>Royal Society Open Science</i> , 2016 , 3, 1604	4 9 .8	241
238	Empty forest or empty rivers? A century of commercial hunting in Amazonia. <i>Science Advances</i> , 2016 , 2, e1600936	14.3	81
237	Abundance signals of amphibians and reptiles indicate strong edge effects in Neotropical fragmented forest landscapes. <i>Biological Conservation</i> , 2016 , 200, 207-215	6.2	31
236	Geographic comparison of plant genera used in frugivory among the pitheciids Cacajao, Callicebus, Chiropotes, and Pithecia. <i>American Journal of Primatology</i> , 2016 , 78, 493-506	2.5	13
235	Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 892-7	11.5	210
234	Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. <i>Global Change Biology</i> , 2016 , 22, 92-109	11.4	126
233	Hydropower and the future of Amazonian biodiversity. <i>Biodiversity and Conservation</i> , 2016 , 25, 451-466	3.4	195
232	Linking plant phenology to conservation biology. <i>Biological Conservation</i> , 2016 , 195, 60-72	6.2	157
231	Human population and socioeconomic modulators of conservation performance in 788 Amazonian and Atlantic Forest reserves. <i>PeerJ</i> , 2016 , 4, e2206	3.1	18
230	Parental care of Chestnut-capped Puffbird Bucco macrodactylus on the middle Jurua River, Amazonas, Brazil. <i>Revista Brasileira De Ornitologia</i> , 2016 , 24, 80-82	0.2	
229	Temporal Decay in Timber Species Composition and Value in Amazonian Logging Concessions. <i>PLoS ONE</i> , 2016 , 11, e0159035	3.7	37
228	Patterns of plant phenology in Amazonian seasonally flooded and unflooded forests. <i>Biotropica</i> , 2016 , 48, 465-475	2.3	76
227	Does biodiversity protect humans against infectious disease? Comment. <i>Ecology</i> , 2016 , 97, 536-42	4.6	23

(2015-2016)

226	Determinants of spatial behavior of a tropical forest seed predator: The roles of optimal foraging, dietary diversification, and home range defense. <i>American Journal of Primatology</i> , 2016 , 78, 523-33	2.5	9
225	Multitrophic diversity effects of network degradation. <i>Ecology and Evolution</i> , 2016 , 6, 4936-46	2.8	8
224	Spatial replacement of dung beetles in edge-affected habitats: biotic homogenization or divergence in fragmented tropical forest landscapes?. <i>Diversity and Distributions</i> , 2016 , 22, 400-409	5	36
223	Forest Structure, Fruit Production and Frugivore Communities in Terra firme and Vizea Forests of the Milio Juru (2016, 85-100		2
222	Extinction debt on reservoir land-bridge islands. <i>Biological Conservation</i> , 2016 , 199, 75-83	6.2	39
221	Patterns of local extinction in an Amazonian archipelagic avifauna following 25 years of insularization. <i>Biological Conservation</i> , 2016 , 199, 101-109	6.2	20
220	Insularization effects on acoustic signals of 2 suboscine Amazonian birds. <i>Behavioral Ecology</i> , 2016 , 27, 1480-1490	2.3	6
219	Edge-mediated compositional and functional decay of tree assemblages in Amazonian forest islands after 26 years of isolation. <i>Journal of Ecology</i> , 2015 , 103, 408-420	6	88
218	Predicting local extinctions of Amazonian vertebrates in forest islands created by a mega dam. <i>Biological Conservation</i> , 2015 , 187, 61-72	6.2	109
217	Estimating the global conservation status of more than 15,000 Amazonian tree species. <i>Science Advances</i> , 2015 , 1, e1500936	14.3	91
216	Upstream and downstream responses of fish assemblages to an eastern Amazonian hydroelectric dam. <i>Freshwater Biology</i> , 2015 , 60, 2037-2050	3.1	42
215	Anthropogenic influence on Amazonian forests in pre-history: An ecological perspective. <i>Journal of Biogeography</i> , 2015 , 42, 2277-2288	4.1	69
214	Evaluating the use of local ecological knowledge to monitor hunted tropical-forest wildlife over large spatial scales. <i>Ecology and Society</i> , 2015 , 20,	4.1	58
213	Environmental Costs of Government-Sponsored Agrarian Settlements in Brazilian Amazonia. <i>PLoS ONE</i> , 2015 , 10, e0134016	3.7	26
212	Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia. <i>PLoS ONE</i> , 2015 , 10, e0129818	3.7	138
211	Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient. <i>PLoS ONE</i> , 2015 , 10, e0136018	3.7	13
210	Effects of reduced-impact logging on medium and large-bodied forest vertebrates in eastern Amazonia. <i>Biota Neotropica</i> , 2015 , 15,		5
209	Pervasive legal threats to protected areas in Brazil. <i>Oryx</i> , 2015 , 49, 25-29	1.5	32

208	Defaunation affects carbon storage in tropical forests. Science Advances, 2015, 1, e1501105	14.3	195
207	Policy reversals do not bode well for conservation in Brazilian Amazonia. <i>Natureza A Conservacao</i> , 2015 , 13, 193-195		10
206	Predicting extinction risk of Brazilian Atlantic forest angiosperms. Conservation Biology, 2014, 28, 1349-	-59	52
205	Predicting primate local extinctions within "real-world" forest fragments: a pan-neotropical analysis. <i>American Journal of Primatology</i> , 2014 , 76, 289-302	2.5	47
204	Ecological correlates of trophic status and frugivory in neotropical primates. <i>Oikos</i> , 2014 , 123, 365-377	4	52
203	Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam. <i>Biological Conservation</i> , 2014 , 174, 30-38	6.2	34
202	BIOFRAG - a new database for analyzing BIOdiversity responses to forest FRAGmentation. <i>Ecology and Evolution</i> , 2014 , 4, 1524-37	2.8	24
201	Environment and Development. Brazil's environmental leadership at risk. <i>Science</i> , 2014 , 346, 706-7	33.3	188
200	Compromise solutions between conservation and road building in the tropics. <i>Current Biology</i> , 2014 , 24, R722-5	6.3	45
199	Pervasive transition of the Brazilian land-use system. <i>Nature Climate Change</i> , 2014 , 4, 27-35	21.4	336
198	Fruitfrugivore interactions in Amazonian seasonally flooded and unflooded forests. <i>Journal of Tropical Ecology</i> , 2014 , 30, 381-399	1.3	64
198 197			
	Tropical Ecology, 2014 , 30, 381-399 Seasonal abundance and breeding habitat occupancy of the Orinoco Goose (Neochen jubata) in	1.3	64
197	Tropical Ecology, 2014, 30, 381-399 Seasonal abundance and breeding habitat occupancy of the Orinoco Goose (Neochen jubata) in western Brazilian Amazonia. <i>Bird Conservation International</i> , 2014, 24, 518-529 Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites.	1.3	64
197 196	Seasonal abundance and breeding habitat occupancy of the Orinoco Goose (Neochen jubata) in western Brazilian Amazonia. <i>Bird Conservation International</i> , 2014 , 24, 518-529 Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. <i>Global Ecology and Biogeography</i> , 2014 , 23, 935-946 The PREDICTS database: a global database of how local terrestrial biodiversity responds to human	1.3 1.7 6.1 2.8	64 6 205
197 196 195	Seasonal abundance and breeding habitat occupancy of the Orinoco Goose (Neochen jubata) in western Brazilian Amazonia. <i>Bird Conservation International</i> , 2014 , 24, 518-529 Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. <i>Global Ecology and Biogeography</i> , 2014 , 23, 935-946 The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. <i>Ecology and Evolution</i> , 2014 , 4, 4701-35 Anthropogenic modulators of species relationships in Neotropical primates: a	1.3 1.7 6.1 2.8	64 6 205
197 196 195	Seasonal abundance and breeding habitat occupancy of the Orinoco Goose (Neochen jubata) in western Brazilian Amazonia. <i>Bird Conservation International</i> , 2014 , 24, 518-529 Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. <i>Global Ecology and Biogeography</i> , 2014 , 23, 935-946 The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. <i>Ecology and Evolution</i> , 2014 , 4, 4701-35 Anthropogenic modulators of species relationships in Neotropical primates: a continental-scale analysis of fragmented forest landscapes. <i>Diversity and Distributions</i> , 2013 , 19, 1339-1	1.3 1.7 6.1 2.8	64 6 205 132 98

190	Dispersal vacuum in the seedling recruitment of a primate-dispersed Amazonian tree. <i>Biological Conservation</i> , 2013 , 163, 99-106	6.2	34
189	Assessing Sampling Biases in Logging Impact Studies in Tropical Forests. <i>Tropical Conservation Science</i> , 2013 , 6, 16-34	1.4	16
188	Human-induced trophic cascades along the fecal detritus pathway. <i>PLoS ONE</i> , 2013 , 8, e75819	3.7	22
187	Advantages of granivory in seasonal environments: feeding ecology of an arboreal seed predator in Amazonian forests. <i>Oikos</i> , 2012 , 121, 1896-1904	4	15
186	Amazonian countryside habitats provide limited avian conservation value. <i>Biodiversity and Conservation</i> , 2012 , 21, 385-405	3.4	27
185	Habitat patch and matrix effects on small-mammal persistence in Amazonian forest fragments. <i>Biodiversity and Conservation</i> , 2012 , 21, 1127-1147	3.4	60
184	The flew winners and many losers paradigm revisited: Emerging prospects for tropical forest biodiversity. <i>Biological Conservation</i> , 2012 , 155, 136-140	6.2	203
183	Determinants of livelihood strategy variation in two extractive reserves in Amazonian flooded and unflooded forests. <i>Environmental Conservation</i> , 2012 , 39, 97-110	3.3	24
182	Future deforestation drivers in an Amazonian ranching frontier. <i>Journal of Land Use Science</i> , 2012 , 7, 365-393	2.7	6
181	How pristine are tropical forests? An ecological perspective on the pre-Columbian human footprint in Amazonia and implications for contemporary conservation. <i>Biological Conservation</i> , 2012 , 151, 45-49	6.2	75
180	Subsidized agricultural resettlements as drivers of tropical deforestation. <i>Biological Conservation</i> , 2012 , 151, 65-68	6.2	23
179	Developing evidence-based arguments to assess the pristine nature of Amazonian forests. <i>Biological Conservation</i> , 2012 , 152, 293-294	6.2	5
178	Cross-scale variation in the density and spatial distribution of an Amazonian non-timber forest resource. <i>Forest Ecology and Management</i> , 2012 , 276, 41-51	3.9	12
177	Landscape-scale variation in structure and biomass of Amazonian seasonally flooded and unflooded forests. <i>Forest Ecology and Management</i> , 2012 , 281, 163-176	3.9	49
176	Consequences of actor level livelihood heterogeneity for additionality in a tropical forest payment for environmental services programme with an undifferentiated reward structure. <i>Global Environmental Change</i> , 2012 , 22, 127-136	10.1	37
175	LiDAR measurements of canopy structure predict spatial distribution of a tropical mature forest primate. <i>Remote Sensing of Environment</i> , 2012 , 127, 98-105	13.2	97
174	Hunting in Ancient and Modern Amazonia: Rethinking Sustainability. <i>American Anthropologist</i> , 2012 , 114, 652-667	1.5	32
173	Pervasive defaunation of forest remnants in a tropical biodiversity hotspot. <i>PLoS ONE</i> , 2012 , 7, e41671	3.7	147

172	Habitat Selection and Use of Space by Bald-Faced Sakis (Pithecia irrorata) in Southwestern Amazonia: Lessons from a Multiyear, Multigroup Study. <i>International Journal of Primatology</i> , 2012 , 33, 401-417	2	68
171	Spatial, Temporal, and Economic Constraints to the Commercial Extraction of a Nontimber Forest Product: CopaBa (Copaifera spp.) Oleoresin in Amazonian Reserves. <i>Economic Botany</i> , 2012 , 66, 165-177	1.7	11
170	Fruit Removal and Natural Seed Dispersal of the Brazil Nut Tree (Bertholletia excelsa) in Central Amazonia, Brazil. <i>Biotropica</i> , 2012 , 44, 205-210	2.3	20
169	Spatial tools for modeling the sustainability of subsistence hunting in tropical forests 2011 , 21, 1802-18		56
168	Primary forests are irreplaceable for sustaining tropical biodiversity. <i>Nature</i> , 2011 , 478, 378-81	50.4	1214
167	Determinants of yield in a non-timber forest product: Copaifera oleoresin in Amazonian extractive reserves. <i>Forest Ecology and Management</i> , 2011 , 261, 255-264	3.9	25
166	Regional-scale heterogeneity in primate community structure at multiple undisturbed forest sites across south-eastern Peru. <i>Journal of Tropical Ecology</i> , 2011 , 27, 181-194	1.3	59
165	Large vertebrate responses to forest cover and hunting pressure in communal landholdings and protected areas of the Yucatan Peninsula, Mexico. <i>Animal Conservation</i> , 2011 , 14, 271-282	3.2	29
164	Using learning networks to understand complex systems: a case study of biological, geophysical and social research in the Amazon. <i>Biological Reviews</i> , 2011 , 86, 457-74	13.5	34
163	The empty forest revisited. <i>Annals of the New York Academy of Sciences</i> , 2011 , 1223, 120-8	6.5	157
162	Usefulness of species range polygons for predicting local primate occurrences in southeastern Peru. <i>American Journal of Primatology</i> , 2011 , 73, 53-61	2.5	7
161	Effects of pioneer tree species hyperabundance on forest fragments in northeastern Brazil. <i>Conservation Biology</i> , 2010 , 24, 1654-63	6	80
160	Game Vertebrate Densities in Hunted and Nonhunted Forest Sites in Manu National Park, Peru. <i>Biotropica</i> , 2010 , 42, 251-261	2.3	106
159	Habitat and Life History Determinants of Antbird Occurrence in Variable-Sized Amazonian Forest Fragments. <i>Biotropica</i> , 2010 , 42, 614-621	2.3	16
158	Improving the design and management of forest strips in human-dominated tropical landscapes: a field test on Amazonian dung beetles. <i>Journal of Applied Ecology</i> , 2010 , 47, 779-788	5.8	67
157	RurallIrban migration brings conservation threats and opportunities to Amazonian watersheds. <i>Conservation Letters</i> , 2010 , 3, 251-259	6.9	41
156	No return from biodiversity loss. <i>Science</i> , 2010 , 329, 1282	33.3	20
155	Vertebrate population responses to reduced-impact logging in a neotropical forest. <i>Forest Ecology and Management</i> , 2010 , 259, 2267-2275	3.9	57

(2009-2010)

154	Rural property size drives patterns of upland and riparian forest retention in a tropical deforestation frontier. <i>Global Environmental Change</i> , 2010 , 20, 705-712	10.1	39
153	A multi-taxa assessment of nestedness patterns across a multiple-use Amazonian forest landscape. <i>Biological Conservation</i> , 2010 , 143, 1102-1109	6.2	34
152	Prospects for biodiversity conservation in the Atlantic Forest: Lessons from aging human-modified landscapes. <i>Biological Conservation</i> , 2010 , 143, 2328-2340	6.2	274
151	Biodiversity conservation in human-modified Amazonian forest landscapes. <i>Biological Conservation</i> , 2010 , 143, 2314-2327	6.2	184
150	A multi-region assessment of tropical forest biodiversity in a human-modified world. <i>Biological Conservation</i> , 2010 , 143, 2293-2300	6.2	81
149	Habitat patch size modulates terrestrial mammal activity patterns in Amazonian forest fragments. Journal of Mammalogy, 2010 , 91, 551-560	1.8	41
148	Seed dispersal of the Brazil nut tree (Bertholletia excelsa) by scatter-hoarding rodents in a central Amazonian forest. <i>Journal of Tropical Ecology</i> , 2010 , 26, 251-262	1.3	54
147	Long-term persistence of midsized to large-bodied mammals in Amazonian landscapes under varying contexts of forest cover. <i>Biodiversity and Conservation</i> , 2010 , 19, 2421-2439	3.4	31
146	Drivers of rural exodus from Amazonian headwaters. <i>Population and Environment</i> , 2010 , 32, 137-176	4	56
145	Measuring the conservation value of tropical primary forests: the effect of occasional species on estimates of biodiversity uniqueness. <i>PLoS ONE</i> , 2010 , 5, e9609	3.7	51
144	Mudan Bs no Ciligo Florestal e seu impacto na ecologia e diversidade dos mamferos no Brasil. <i>Biota Neotropica</i> , 2010 , 10, 47-52		19
143	Overexploitation 2010 , 107-130		13
142	Interspecific primate associations in Amazonian flooded and unflooded forests. <i>Primates</i> , 2009 , 50, 239	- 5 .17	81
141	Modelling the long-term sustainability of indigenous hunting in Manu National Park, Peru: landscape-scale management implications for Amazonia. <i>Journal of Applied Ecology</i> , 2009 , 46, 804-814	5.8	78
140	Gap-crossing movements predict species occupancy in Amazonian forest fragments. <i>Oikos</i> , 2009 , 118, 280-290	4	157
139	Co-declining mammals and dung beetles: an impending ecological cascade. <i>Oikos</i> , 2009 , 118, 481-487	4	158
138	Prospects for tropical forest biodiversity in a human-modified world. <i>Ecology Letters</i> , 2009 , 12, 561-82	10	602
137	Hunting for sustainability in tropical secondary forests. <i>Conservation Biology</i> , 2009 , 23, 1270-80	6	56

136	Vulnerability and resilience of tropical forest species to land-use change. <i>Conservation Biology</i> , 2009 , 23, 1438-47	6	65
135	The potential for species conservation in tropical secondary forests. <i>Conservation Biology</i> , 2009 , 23, 14	06-17	399
134	Regional scale effects of human density and forest disturbance on large-bodied vertebrates throughout the Yucatfi Peninsula, Mexico. <i>Biological Conservation</i> , 2009 , 142, 134-148	6.2	66
133	Long-term erosion of tree reproductive trait diversity in edge-dominated Atlantic forest fragments. <i>Biological Conservation</i> , 2009 , 142, 1154-1165	6.2	117
132	Priority areas for the conservation of Atlantic forest large mammals. <i>Biological Conservation</i> , 2009 , 142, 1229-1241	6.2	115
131	Allocation of hunting effort by Amazonian smallholders: Implications for conserving wildlife in mixed-use landscapes. <i>Biological Conservation</i> , 2009 , 142, 1777-1786	6.2	70
130	Sensations and reaction times evoked by electrical sinusoidal stimulation. <i>Neurophysiologie Clinique</i> , 2009 , 39, 283-90	2.7	7
129	Impacts of Subsistence Game Hunting on Amazonian Primates 2009 , 389-412		15
128	Habitat quality of the woolly spider monkey (Brachyteles hypoxanthus). <i>Folia Primatologica</i> , 2009 , 80, 295-308	1.2	8
127	Diversity and composition of Amazonian moths in primary, secondary and plantation forests. Journal of Tropical Ecology, 2009 , 25, 281-300	1.3	43
126	Conservation value of remnant riparian forest corridors of varying quality for amazonian birds and mammals. <i>Conservation Biology</i> , 2008 , 22, 439-49	6	200
125	Avian life-history determinants of local extinction risk in a hyper-fragmented neotropical forest landscape. <i>Animal Conservation</i> , 2008 , 11, 128-137	3.2	80
124	The cost-effectiveness of biodiversity surveys in tropical forests. <i>Ecology Letters</i> , 2008 , 11, 139-50	10	381
123	Population abundance and biomass of large-bodied birds in Amazonian flooded and unflooded forests. <i>Bird Conservation International</i> , 2008 , 18, 87-101	1.7	35
122	Terrestrial mammal responses to edges in Amazonian forest patches: a study based on track stations. <i>Mammalia</i> , 2008 , 72,	1	25
121	Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. <i>Biological Conservation</i> , 2008 , 141, 249-260	6.2	218
120	The value of forest strips for understorey birds in an Amazonian plantation landscape. <i>Biological Conservation</i> , 2008 , 141, 2262-2278	6.2	37
119	Fire-mediated dieback and compositional cascade in an Amazonian forest. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2008 , 363, 1787-94	5.8	207

(2007-2008)

118	Deforestation dynamics in a fragmented region of southern Amazonia: evaluation and future scenarios. <i>Environmental Conservation</i> , 2008 , 35, 93-103	3.3	54
117	Diversity and composition of fruit-feeding butterflies in tropical Eucalyptus plantations. <i>Biodiversity and Conservation</i> , 2008 , 17, 1089-1104	3.4	36
116	Associations between primates and other mammals in a central Amazonian forest landscape. <i>Primates</i> , 2008 , 49, 219-22	1.7	11
115	Edge-effects Drive Tropical Forest Fragments Towards an Early-Successional System. <i>Biotropica</i> , 2008 , 40, 657-661	2.3	203
114	Large-vertebrate assemblages of primary and secondary forests in the Brazilian Amazon. <i>Journal of Tropical Ecology</i> , 2007 , 23, 653-662	1.3	63
113	The value of primary, secondary and plantation forests for fruit-feeding butterflies in the Brazilian Amazon. <i>Journal of Applied Ecology</i> , 2007 , 44, 1001-1012	5.8	129
112	Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. <i>Journal of Applied Ecology</i> , 2007 , 45, 883-893	5.8	212
111	The value of primary, secondary, and plantation forests for a neotropical herpetofauna. <i>Conservation Biology</i> , 2007 , 21, 775-87	6	132
110	The sustainability of subsistence hunting by Matsigenka native communities in Manu National Park, Peru. <i>Conservation Biology</i> , 2007 , 21, 1174-85	6	87
109	Disturbance-mediated mammal persistence and abundance-area relationships in Amazonian forest fragments. <i>Conservation Biology</i> , 2007 , 21, 1626-40	6	108
108	Predicting the Uncertain Future of Tropical Forest Species in a Data Vacuum. <i>Biotropica</i> , 2007 , 39, 25-30	2.3	131
107	Basin-Wide Effects of Game Harvest on Vertebrate Population Densities in Amazonian Forests: Implications for Animal-Mediated Seed Dispersal. <i>Biotropica</i> , 2007 , 39, 304-315	2.3	574
106	Hunting and Plant Community Dynamics in Tropical Forests: A Synthesis and Future Directions. <i>Biotropica</i> , 2007 , 39, 385-392	2.3	120
105	The Plight of Large Animals in Tropical Forests and the Consequences for Plant Regeneration. <i>Biotropica</i> , 2007 , 39, 289-291	2.3	120
104	Disturbance-Mediated Drift in Tree Functional Groups in Amazonian Forest Fragments. <i>Biotropica</i> , 2007 , 39, 691-701	2.3	79
103	Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18555-60	11.5	735
102	Vertebrate responses to fruit production in Amazonian flooded and unflooded forests. <i>Biodiversity and Conservation</i> , 2007 , 16, 4165-4190	3.4	112
101	Diversity and composition of fruit-feeding butterflies in tropical Eucalyptus plantations. <i>Topics in Biodiversity and Conservation</i> , 2007 , 165-180	0.2	

100	Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico: Effects of forest disturbance. <i>Forest Ecology and Management</i> , 2007 , 247, 80-90	3.9	81
99	Litter fall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon. <i>Forest Ecology and Management</i> , 2007 , 247, 91-97	3.9	110
98	The value of primary, secondary and plantation forests for Amazonian birds. <i>Biological Conservation</i> , 2007 , 136, 212-231	6.2	183
97	Paradox, presumption and pitfalls in conservation biology: The importance of habitat change for amphibians and reptiles. <i>Biological Conservation</i> , 2007 , 138, 166-179	6.2	218
96	The responses of understorey birds to forest fragmentation, logging and wildfires: An Amazonian synthesis. <i>Biological Conservation</i> , 2006 , 128, 182-192	6.2	123
95	Rapid avifaunal collapse along the Amazonian deforestation frontier. <i>Biological Conservation</i> , 2006 , 133, 198-211	6.2	89
94	Detecting anthropogenic disturbance in tropical forests. <i>Trends in Ecology and Evolution</i> , 2006 , 21, 227-9	910.9	168
93	Floristic, edaphic and structural characteristics of flooded and unflooded forests in the lower Rio Pur region of central Amazonia, Brazil. <i>Acta Amazonica</i> , 2006 , 36, 25-35	0.8	130
92	Human Wildlife conflicts in a fragmented Amazonian forest landscape: determinants of large felid depredation on livestock. <i>Animal Conservation</i> , 2006 , 9, 179-188	3.2	160
91	Effects of Single and Recurrent Wildfires on Fruit Production and Large Vertebrate Abundance in a Central Amazonian Forest. <i>Biodiversity and Conservation</i> , 2006 , 15, 985-1012	3.4	69
90	Impact of game hunting by the Kayaplof south-eastern Amazonia: implications for wildlife conservation in tropical forest indigenous reserves. <i>Biodiversity and Conservation</i> , 2006 , 15, 2627-2653	3.4	98
89	Impact of game hunting by the Kayaplbf south-eastern Amazonia: implications for wildlife conservation in tropical forest indigenous reserves 2006 , 287-313		
88	Anthropogenic determinants of primate and carnivore local extinctions in a fragmented forest landscape of southern Amazonia. <i>Biological Conservation</i> , 2005 , 124, 383-396	6.2	256
87	Mammal assemblage structure in Amazonian flooded and unflooded forests. <i>Journal of Tropical Ecology</i> , 2005 , 21, 133-145	1.3	149
86	Primate population densities in three nutrient-poor amazonian terra firme forests of south-eastern Colombia. <i>Folia Primatologica</i> , 2005 , 76, 135-45	1.2	25
85	Why We Need Megareserves in Amazonia. <i>Conservation Biology</i> , 2005 , 19, 728-733	6	125
84	Population Density and Home Range Size of Red-Rumped Agoutis (Dasyprocta leporina) Within and Outside a Natural Brazil Nut Stand in Southeastern Amazonia1. <i>Biotropica</i> , 2005 , 37, 317-321	2.3	42
83	Tree Phenology in Adjacent Amazonian Flooded and Unflooded Forests1. <i>Biotropica</i> , 2005 , 37, 620-630	2.3	129

(2002-2005)

Primate assemblage structure in Amazonian flooded and unflooded forests. <i>American Journal of Primatology</i> , 2005 , 67, 243-58	5	122
Frequency of Werner helicase 1367 polymorphism and age-related morbidity in an elderly Brazilian population. <i>Brazilian Journal of Medical and Biological Research</i> , 2005 , 38, 1053-9	8	14
Ecological responses to el Ni B -induced surface fires in central Brazilian Amazonia: management implications for flammable tropical forests. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2004 , 359, 367-80	:.8	145
AVIFAUNAL RESPONSES TO SINGLE AND RECURRENT WILDFIRES IN AMAZONIAN FORESTS 2004 , 14, 1358-1373		94
Evaluating non-user willingness to pay for a large-scale conservation programme in Amazonia: a UK/Italian contingent valuation study. <i>Environmental Conservation</i> , 2003 , 30, 139-146	.3	61
Helicobacter pylori and cagA and vacA gene status in children from Brazil with chronic gastritis. Clinical and Experimental Medicine, 2003, 3, 166-72	9	17
Effects of surface fires on understorey insectivorous birds and terrestrial arthropods in central Brazilian Amazonia. <i>Animal Conservation</i> , 2003 , 6, 299-306	.2	16
Stunning and myocardial contractile autoregulation studied on the isolated isovolumic blood-perfused dog heart. <i>Acta Physiologica Scandinavica</i> , 2003 , 179, 263-71		
Elephants versus butterflies: the ecological role of large herbivores in the evolutionary history of two tropical worlds. <i>Journal of Biogeography</i> , 2003 , 30, 1357-1380	1	35
Extent of Nontimber Resource Extraction in Tropical Forests: Accessibility to Game Vertebrates by Hunters in the Amazon Basin. <i>Conservation Biology</i> , 2003 , 17, 521-535	Ó	175
Morphological correlates of fire-induced tree mortality in a central Amazonian forest. <i>Journal of Tropical Ecology</i> , 2003 , 19, 291-299	.3	72
Demographic threats to the sustainability of Brazil nut exploitation. <i>Science</i> , 2003 , 302, 2112-4	3.3	201
Bringing home the biggest bacon: a cross-site analysis of the structure of hunter-kill profiles in Neotropical forests. <i>Biological Conservation</i> , 2003 , 111, 415-425	 2	173
Wild meat: the bigger picture. <i>Trends in Ecology and Evolution</i> , 2003 , 18, 351-357	.0.9	425
Surface wildfires in central Amazonia: short-term impact on forest structure and carbon loss. <i>Forest Ecology and Management</i> , 2003 , 179, 321-331	.9	54
Vertebrate responses to surface wildfires in a central Amazonian forest. <i>Oryx</i> , 2003 , 37,	.5	62
Sawtooth waves during REM sleep after administration of haloperidol combined with total sleep deprivation in healthy young subjects. <i>Brazilian Journal of Medical and Biological Research</i> , 2002 , 35, 599-6	 604	3
CFC index for the diagnosis of cardiofaciocutaneous syndrome. <i>American Journal of Medical Genetics Part A</i> , 2002 , 112, 12-6		61
	Frequency of Werner helicase 1367 polymorphism and age-related morbidity in an elderly Brazilian population. Brazilian Journal of Medical and Biological Research, 2005, 38, 1053-9 Ecological responses to el Niñ-induced surface fires in central Brazilian Amazonia: management implications for flammable tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 367-80 AVIFAUNAL RESPONSES TO SINGLE AND RECURRENT WILDFIRES IN AMAZONIAN FORESTS 2004, 14, 1358-1373 Evaluating non-user willingness to pay for a large-scale conservation programme in Amazonia: a UK/Italian contingent valuation study. Environmental Conservation, 2003, 30, 139-146 Helicobacter pylori and cagA and vacA gene status in children from Brazil with chronic gastritis. Clinical and Experimental Medicine, 2003, 3, 166-72 Effects of surface fires on understorey insectivorous birds and terrestrial arthropods in central Brazilian Amazonia. Animal Conservation, 2003, 6, 299-306 Stunning and myocardial contractite autoregulation studied on the isolated isovolumic blood-perfused dog heart. Acta Physiologica Scandinavica, 2003, 179, 263-71 Elephants versus butterflies: the ecological role of large herbivores in the evolutionary history of two tropical worlds. Journal of Biogeography, 2003, 30, 1357-1380 Extent of Nontimber Resource Extraction in Tropical Forests: Accessibility to Game Vertebrates by Hunters in the Amazon Basin. Conservation Biology, 2003, 17, 521-535 Morphological correlates of fire-induced tree mortality in a central Amazonian forest. Journal of Tropical Ecology, 2003, 19, 291-299 Demographic threats to the sustainability of Brazil nut exploitation. Science, 2003, 302, 2112-4 Bringing home the biggest bacon: a cross-site analysis of the structure of hunter-kill profiles in Neotropical forests. Biological Conservation, 2003, 111, 415-425 Wild meat: the bigger picture. Trends in Ecology and Evolution, 2003, 18, 351-357 Surface wildfires in central Amazonia: short-term impact on forest st	Frequency of Werner helicase 1367 polymorphism and age-related morbidity in an elderly Brazilian population. Brazilian Journal of Medical and Biological Research, 2005, 38, 1053-9 Ecological responses to el Niñ-induced surface fires in central Brazilian Amazonia: management implications for flammable tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 367-80 AVIFAUNAL RESPONSES TO SINGLE AND RECURRENT WILDFIRES IN AMAZONIAN FORESTS 2004, 14, 1358-1373 Evaluating non-user willingness to pay for a large-scale conservation programme in Amazonia: a UK/Italian contingent valuation study. Environmental Conservation, 2003, 30, 139-146 3-3 Helicobacter pylori and cagA and vacA gene status in children from Brazil with chronic gastritis. Clinical and Experimental Medicine, 2003, 3, 166-72 Effects of surface fires on understorey insectivorous birds and terrestrial arthropods in central Brazilian Amazonia. Animal Conservation, 2003, 6, 299-306 Stunning and myocardial contractite autoregulation studied on the isolated isovolumic blood-perfused dog heart. Acta Physiologica Scandinavica, 2003, 179, 263-71 Elephants versus butterflies: the ecological role of large herbivores in the evolutionary history of two tropical worlds. Journal of Biogeography, 2003, 30, 1357-1380 Extent of Nontimber Resource Extraction in Tropical Forests: Accessibility to Game Vertebrates by Hunters in the Amazon Basin. Conservation Biology, 2003, 17, 521-535 Morphological correlates of fire-induced tree mortality in a central Amazonian forest. Journal of Tropical Ecology, 2003, 19, 291-299 Demographic threats to the sustainability of Brazil nut exploitation. Science, 2003, 302, 2112-4 33-3 Bringing home the biggest bacon: a cross-site analysis of the structure of hunter-kill profiles in Neotropical forests. Biological Conservation, 2003, 111, 415-425 Wild meat: the bigger picture. Trends in Ecology and Evolution, 2003, 18, 351-357 10-9 Surface wildfires in central Amazonia: short-term im

64	Bushmeat Exploitation in Tropical Forests: an Intercontinental Comparison. <i>Conservation Biology</i> , 2002 , 16, 232-237	6	295
63	Large tree mortality and the decline of forest biomass following Amazonian wildfires. <i>Ecology Letters</i> , 2002 , 6, 6-8	10	160
62	Abiotic and vertebrate seed dispersal in the Brazilian Atlantic forest: implications for forest regeneration. <i>Biological Conservation</i> , 2002 , 106, 165-176	6.2	169
61	Effects of ground fires on understorey bird assemblages in Amazonian forests. <i>Biological Conservation</i> , 2002 , 105, 157-169	6.2	127
60	Primate frugivory in two species-rich neotropical forests: implications for the demography of large-seeded plants in overhunted areas. 2002 , 407-421		15
59	Synergistic Effects of Subsistence Hunting and Habitat Fragmentation on Amazonian Forest Vertebrates. <i>Conservation Biology</i> , 2001 , 15, 1490-1505	6	381
58	Perils in Parks or Parks in Peril? Reconciling Conservation in Amazonian Reserves with and without Use. <i>Conservation Biology</i> , 2001 , 15, 793-797	6	48
57	Primate conservation in the new millennium: The role of scientists. <i>Evolutionary Anthropology</i> , 2001 , 10, 16-33	4.7	258
56	Conservation and development alliances with the Kayaplof south-eastern Amazonia, a tropical forest indigenous people. <i>Environmental Conservation</i> , 2001 , 28, 10-22	3.3	124
55	Paving the way to the future of Amazonia. <i>Trends in Ecology and Evolution</i> , 2001 , 16, 217-219	10.9	31
54	Resource seasonality and the structure of mixed species bird flocks in a coastal Atlantic forest of southeastern Brazil. <i>Journal of Tropical Ecology</i> , 2000 , 16, 33-53	1.3	108
53	Identifying keystone plant resources in tropical forests: the case of gums from Parkia pods. <i>Journal of Tropical Ecology</i> , 2000 , 16, 287-317	1.3	144
52	Effects of Subsistence Hunting on Vertebrate Community Structure in Amazonian Forests. <i>Conservation Biology</i> , 2000 , 14, 240-253	6	395
51	Density compensation in neotropical primate communities: evidence from 56 hunted and nonhunted Amazonian forests of varying productivity. <i>Oecologia</i> , 2000 , 122, 175-189	2.9	2 00
50	Riverine barriers and the geographic distribution of Amazonian species. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 13672-7	11.5	189
50 49		11.5	189
	Academy of Sciences of the United States of America, 2000, 97, 13672-7 Effects of subsistence hunting and forest types on the structure of Amazonian primate	11.5	

46	Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. <i>Biological Conservation</i> , 1999 , 91, 119-127	6.2	226
45	Ground fires as agents of mortality in a Central Amazonian forest. <i>Journal of Tropical Ecology</i> , 1999 , 15, 535-541	1.3	75
44	Species coexistence, distribution, and environmental determinants of neotropical primate richness: A community-level zoogeographic analysis 1999 , 55-74		49
43	Age-associated mosaicism and polyploidy in Down's syndrome. <i>Mechanisms of Ageing and Development</i> , 1998 , 100, 77-83	5.6	6
42	Rethinking tropical ecosystem management. <i>Trends in Ecology and Evolution</i> , 1998 , 13, 252-3	10.9	
41	Effects of Habitat Quality and Hunting Pressure on Arboreal Folivore Densities in Neotropical Forests: A Case Study of Howler Monkeys (Alouatta spp.). <i>Folia Primatologica</i> , 1997 , 68, 199-222	1.2	142
40	Seed dispersal, spatial distribution and population structure of Brazilnut trees (Bertholletia excelsa) in southeastern Amazonia. <i>Journal of Tropical Ecology</i> , 1997 , 13, 595-616	1.3	128
39	Vertebrate predation of Brazil-nuts (Bertholletia excelsa, Lecythidaceae), an agouti-dispersed Amazonian seed crop: a test of the escape hypothesis. <i>Journal of Tropical Ecology</i> , 1997 , 13, 69-79	1.3	78
38	Primate community structure at twenty western Amazonian flooded and unflooded forests. Journal of Tropical Ecology, 1997 , 13, 381-405	1.3	214
37	Foraging ecology and use of space in wild golden lion tamarins (Leontopithecus rosalia). <i>American Journal of Primatology</i> , 1997 , 41, 289-305	2.5	138
36	Foraging ecology and use of space in wild golden lion tamarins (Leontopithecus rosalia) 1997 , 41, 289		3
35	Riverine barriers and gene flow in Amazonian saddle-back tamarins. Folia Primatologica, 1996 , 67, 113-2	241.2	132
34	Avian Dispersal of "Mimetic Seeds" of Ormosia lignivalvis by Terrestrial Granivores: Deception or Mutualism?. <i>Oikos</i> , 1996 , 75, 249	4	22
33	Population status of white-lipped Tayassu pecari and collared peccaries T. tajacu in hunted and unhunted Amazonian forests. <i>Biological Conservation</i> , 1996 , 77, 115-123	6.2	108
32	Food patch structure and plant resource partitioning in interspecific associations of amazonian tamarins. <i>International Journal of Primatology</i> , 1996 , 17, 695-723	2	40
31	Use of Space, Spatial Group Structure, and Foraging Group Size of Gray Woolly Monkeys (Lagothrix lagotricha cana) at Urucu, Brazil 1996 , 467-488		20
30	Amazonian Nature Reserves: An Analysis of the Defensibility Status of Existing Conservation Units and Design Criteria for the Future. <i>Conservation Biology</i> , 1995 , 9, 34-46	6	225
29	Diet and feeding ecology of gray woolly monkeys (lagothrix lagotricha cana) in Central Amazonia: Comparisons with other Atelines. <i>International Journal of Primatology</i> , 1994 , 15, 333-372	2	95

28	Which are the largest New World monkeys?. Journal of Human Evolution, 1994, 26, 245-249	3.1	31
27	Primate Responses to Phenological Changes in an Amazonian Terra Firme Forest. <i>Biotropica</i> , 1994 , 26, 98	2.3	195
26	Composition, Density, and Fruiting Phenology of Arborescent Palms in an Amazonian Terra Firme Forest. <i>Biotropica</i> , 1994 , 26, 285	2.3	114
25	Exploring solutions for the tropical biodiversity crisis. <i>Trends in Ecology and Evolution</i> , 1994 , 9, 164-5	10.9	8
24	Marmosets and tamarins: systematics, behaviour, and ecology. <i>Trends in Ecology and Evolution</i> , 1994 , 9, 273-274	10.9	2
23	Indigenous Reserves and Nature Conservation in Amazonian Forests. <i>Conservation Biology</i> , 1994 , 8, 586	- 5 88	53
22	Anti-predation benefits in a mixed-species group of Amazonian tamarins. <i>Folia Primatologica</i> , 1993 , 61, 61-76	1.2	80
21	Notes on the primates of the JurulRiver, western Brazilian Amazonia. <i>Folia Primatologica</i> , 1993 , 61, 97-103	1.2	73
20	Structure and spatial organization of an Amazonian terra firme forest primate community. <i>Journal of Tropical Ecology</i> , 1993 , 9, 259-276	1.3	143
19	How caimans protect fish stocks in western Brazilian Amazonia 🖟 case for maintaining the ban on caiman hunting. <i>Oryx</i> , 1993 , 27, 225-230	1.5	10
18	Notes on the ecology of buffy saki monkeys (Pithecia albicans, Gray 1860): A canopy seed-predator. <i>American Journal of Primatology</i> , 1993 , 31, 129-140	2.5	62
17	Diet and feeding ecology of saddle-back (Saguinus fuscicollis) and moustached (S. mystax) tamarins in an Amazonian terra firme forest. <i>Journal of Zoology</i> , 1993 , 230, 567-592	2	76
16	Consequences of Joint-Territoriality in a Mixed-Species Group of Tamarin Monkeys. <i>Behaviour</i> , 1992 , 123, 220-246	1.4	29
15	Prey-capture benefits in a mixed-species group of Amazonian tamarins, Saguinus fuscicollis and S. mystax. <i>Behavioral Ecology and Sociobiology</i> , 1992 , 31, 339	2.5	65
14	Seed Predation of Cariniana micrantha (Lecythidaceae) by Brown Capuchin Monkeys in Central Amazonia. <i>Biotropica</i> , 1991 , 23, 262	2.3	65
13	Serum creatine-kinase (CK) and pyruvate-kinase (PK) activities in Duchenne (DMD) as compared with Becker (BMD) muscular dystrophy. <i>Journal of the Neurological Sciences</i> , 1991 , 102, 190-6	3.2	110
12	Humboldt's woolly monkeys decimated by hunting in Amazonia. <i>Oryx</i> , 1991 , 25, 89-95	1.5	50
11	Effects of hunting on western Amazonian primate communities. <i>Biological Conservation</i> , 1990 , 54, 47-59	96.2	263

LIST OF PUBLICATIONS

10	Costs and benefits of territorial defense in wild golden lion tamarins, Leontopithecus rosalia. <i>Behavioral Ecology and Sociobiology</i> , 1989 , 25, 227-233	2.5	56	
9	Exudate-Eating by Wild Golden Lion Tamarins, Leontopithecus rosalia. <i>Biotropica</i> , 1989 , 21, 287	2.3	18	
8	Relation between height and clinical course in Duchenne muscular dystrophy. <i>American Journal of Medical Genetics Part A</i> , 1988 , 29, 405-10		25	
7	A comparison of two-component and quadratic models to assess survival of irradiated stage-7 oocytes of Drosophila melanogaster. <i>Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis</i> , 1981 , 91, 341-6		1	
6	Cytomorphology and behavior of late bone marrow and peripheral blood erythroid cells in experimental hemolytic anemia. <i>Cytologia</i> , 1980 , 45, 411-21	0.9	7	
5	Use of normal daughters' CPK levels in the estimation of heterozygosity risks in X-linked muscular dystrophies. <i>Human Heredity</i> , 1975 , 25, 354-9	1.1	15	
4	Medium- to large-bodied mammal surveys across the Neotropics are heavily biased against the most faunally intact assemblages. <i>Mammal Review</i> ,	5	2	
3	Carbon and Beyond: The Biogeochemistry of Climate in a Rapidly Changing Amazon. <i>Frontiers in Forests and Global Change</i> ,4,	3.7	3	
2	Land-sharing logging is more profitable than land sparing in the Brazilian Amazon. <i>Environmental Research Letters</i> ,	6.2	2	
1	Biodiversity Conservation Performance of Sustainable-Use Tropical Forest Reserves245-253		1	