

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/315605/publications.pdf Version: 2024-02-01

I EI YU

#	Article	IF	CITATIONS
1	Polyaniline-supported tungsten-catalyzed oxidative deoximation reaction with high catalyst turnover number. Chinese Chemical Letters, 2023, 34, 107505.	9.0	31
2	Selenization of cotton products with NaHSe endowing the antibacterial activities. Chinese Chemical Letters, 2022, 33, 205-208.	9.0	24
3	Highly crystalline K-intercalated Se/C: an easily accessible mesoporous material catalyzing the epoxidation of β-ionone. Catalysis Science and Technology, 2022, 12, 2241-2247.	4.1	11
4	Two-Dimensional Cobalt-Doped Ti ₃ C ₂ MXene Nanozyme-Mediated Homogeneous Electrochemical Strategy for Pesticides Assay Based on In Situ Generation of Electroactive Substances. Analytical Chemistry, 2022, 94, 3669-3676.	6.5	89
5	Mesoporous Mn‣e/Al ₂ O ₃ : A recyclable and reusable catalyst for selective oxidation of alcohols. Applied Organometallic Chemistry, 2022, 36, .	3.5	4
6	Concise selenization of polystyrene via the FeCl3-catalyzed reaction with (PhSe)2. Materials Letters, 2022, 319, 132247.	2.6	2
7	Chloro-free synthesis of LiPF6 using the fluorine-oxygen exchange technique. Chinese Chemical Letters, 2022, 33, 4061-4063.	9.0	10
8	Synthesis, application and industrialization of LiFSI: A review and perspective. Journal of Power Sources, 2022, 535, 231481.	7.8	9
9	Polyaniline-Supported Zinc Oxide Nanocomposite-Catalyzed Condensation of Lactic Acid to Lactide with High Yield and Optical Purity. ACS Sustainable Chemistry and Engineering, 2022, 10, 7658-7663.	6.7	9
10	Autocatalytic deoximation reactions driven by visible light. Reaction Chemistry and Engineering, 2021, 6, 119-124.	3.7	14
11	Selenium-catalyzed selective reactions of carbonyl derivatives: state-of-the-art and future challenges. Green Chemistry, 2021, 23, 4647-4655.	9.0	43
12	Catalytic epoxidation of β-ionone with molecular oxygen using selenium-doped silica materials. New Journal of Chemistry, 2021, 45, 17241-17246.	2.8	7
13	Dietary Selenized Glucose Increases Selenium Concentration and Antioxidant Capacity of the Liver, Oviduct, and Spleen in Laying Hens. Biological Trace Element Research, 2021, 199, 4746-4752.	3.5	17
14	AIBNâ€Initiated Oxidative Deoximation Reaction: A Metalâ€Free and Environmentallyâ€Friendly Protocol. Asian Journal of Organic Chemistry, 2021, 10, 614-618.	2.7	14
15	An inexact optimization model for distributed multiâ€energy systems management in sustainable airports. International Journal of Energy Research, 2021, 45, 13071-13087.	4.5	1
16	A perspective of the engineering applications of carbon-based selenium-containing materials. Chinese Chemical Letters, 2021, 32, 2933-2938.	9.0	56
17	Organotellurium-catalyzed oxidative deoximation reactions using visible-light as the precise driving energy. Chinese Chemical Letters, 2021, 32, 1029-1032.	9.0	37
18	Synergistic effect of T80/B30 vesicles and T80/PN320 mixed micelles with Se/C on nasal mucosal immunity. Chinese Chemical Letters, 2021, 32, 2761-2764.	9.0	26

#	Article	IF	CITATIONS
19	Methylselenized Glucose: Improvement of the Stability of Glucose-Supported Selenium via the End-Capping Strategy. Industrial & Engineering Chemistry Research, 2021, 60, 8659-8663.	3.7	11
20	Design and preparation of poly(tannic acid) nanoparticles with intrinsic fluorescence: A sensitive detector of picric acid. Chemical Engineering Journal, 2021, 416, 129090.	12.7	35
21	Photoredox atalyzed Simultaneous Olefin Hydrogenation and Alcohol Oxidation over Crystalline Porous Polymeric Carbon Nitride. ChemSusChem, 2021, 14, 3344-3350.	6.8	16
22	Polyaniline‣upported Tungsten atalyzed Green and Selective Oxidation of Alcohols. ChemistrySelect, 2021, 6, 7599-7603.	1.5	12
23	PhSe(O)OH/NHPI-catalyzed oxidative deoximation reaction using air as oxidant. Molecular Catalysis, 2021, 514, 111849.	2.0	7
24	Probing the effect of straight chain fatty acids on the properties of lead-containing plexiglass. Reaction Chemistry and Engineering, 2021, 6, 1628-1634.	3.7	4
25	Synergetic catalysis of Se and Cu allowing diethoxylation of halomethylene ketones using O ₂ as the mild oxidant. Reaction Chemistry and Engineering, 2021, 6, 454-458.	3.7	13
26	Uranyl-catalysed C–H alkynylation and olefination. Organic Chemistry Frontiers, 2021, 8, 5968-5974.	4.5	11
27	A novel PANI/SEBS film/fiber large deformation conductive elastomer with rapid recovery of resistance. Materials Letters, 2021, 308, 131205.	2.6	1
28	Progresses in synthetic technology development for the production of <scp>l</scp> -lactide. Organic and Biomolecular Chemistry, 2021, 19, 10288-10295.	2.8	10
29	Selenium-doped Fe2O3-catalyzed oxidative scission of C C bond. Catalysis Communications, 2020, 133, 105828.	3.3	27
30	The photocatalytic redox properties of polymeric carbon nitride nanocages (PCNCs) with mesoporous hollow spherical structures prepared by a ZnO-template method. Microporous and Mesoporous Materials, 2020, 292, 109639.	4.4	8
31	Construction of Carbocycles from Methylenecyclopropanes. Advanced Synthesis and Catalysis, 2020, 362, 438-461.	4.3	40
32	Photocatalytic Isomerization of Styrenyl Halides: Stereodivergent Synthesis of Functionalized Alkenes. European Journal of Organic Chemistry, 2020, 2020, 1472-1477.	2.4	24
33	Ton-Scale Production of 1,4-Bis(dichloromethyl)-2,5-dichlorobenzene via Unexpected Controllable Chlorination of 1,4-Dichloro-2,5-dimethylbenzene. Industrial & Engineering Chemistry Research, 2020, 59, 1025-1029.	3.7	5
34	Design and synthesis of Fe3O4@SiO2@mSiO2-Fe: A magnetically separable catalyst for selective oxidative cracking reaction of styrene using air as partial oxidant. Applied Catalysis A: General, 2020, 590, 117353.	4.3	28
35	Concise synthesis of polyselenides: efficient catalysts for the oxidative cracking reaction of alkenes allowing the utilization of O ₂ as a partial oxidant under mild conditions. Sustainable Energy and Fuels, 2020, 4, 730-736.	4.9	26
36	Energy saving and environment-friendly element-transfer reactions with industrial application potential. Chinese Chemical Letters, 2020, 31, 1078-1082.	9.0	64

#	Article	IF	CITATIONS
37	Tailorable carbazolyl cyanobenzene-based photocatalysts for visible light-induced reduction of aryl halides. Chinese Chemical Letters, 2020, 31, 1899-1902.	9.0	31
38	Design and synthesis of the honeycomb PtSnNa/ZSMâ€5 monolithic catalyst for propane dehydrogenation. Applied Organometallic Chemistry, 2020, 34, e5380.	3.5	5
39	An unexpected generation of magnetically separable Se/Fe3O4 for catalytic degradation of polyene contaminants with molecular oxygen. Chinese Chemical Letters, 2020, 31, 3205-3208.	9.0	52
40	Enantio―and Regioselective NiH atalyzed Reductive Hydroarylation of Vinylarenes with Aryl Iodides. Angewandte Chemie - International Edition, 2020, 59, 21530-21534.	13.8	91
41	Enantio―and Regioselective NiH atalyzed Reductive Hydroarylation of Vinylarenes with Aryl Iodides. Angewandte Chemie, 2020, 132, 21714-21718.	2.0	23
42	Kilogram-Scale Production of Selenized Glucose. Industrial & Engineering Chemistry Research, 2020, 59, 10763-10767.	3.7	25
43	Ligandâ€Enabled Nickelâ€Catalyzed Redoxâ€Relay Migratory Hydroarylation of Alkenes with Arylborons. Angewandte Chemie, 2020, 132, 9271-9276.	2.0	15
44	Alkyl Carbazates for Electrochemical Deoxygenative Functionalization of Heteroarenes. Angewandte Chemie - International Edition, 2020, 59, 10859-10863.	13.8	66
45	Ligandâ€Enabled Nickelâ€Catalyzed Redoxâ€Relay Migratory Hydroarylation of Alkenes with Arylborons. Angewandte Chemie - International Edition, 2020, 59, 9186-9191.	13.8	75
46	Inhibition of mycotoxin deoxynivalenol generation by using selenized glucose. Chinese Chemical Letters, 2020, 31, 3276-3278.	9.0	34
47	Yolk–shell or yolk-in-shell nanocatalysts? A proof-of-concept study. Journal of Materials Chemistry A, 2020, 8, 10217-10225.	10.3	14
48	Synthesis of selenium-doped carbon from glucose: An efficient antibacterial material against Xcc. Chinese Chemical Letters, 2020, 31, 1887-1889.	9.0	43
49	Copper-catalysed photoinduced decarboxylative alkynylation: a combined experimental and computational study. Chemical Science, 2020, 11, 4939-4947.	7.4	35
50	Alkyl Carbazates for Electrochemical Deoxygenative Functionalization of Heteroarenes. Angewandte Chemie, 2020, 132, 10951-10955.	2.0	14
51	Selenium-catalyzed oxidation of alkenes: insight into the mechanisms and developing trend. Catalysis Science and Technology, 2020, 10, 3113-3121.	4.1	65
52	Synergistic Catalysis of Se and Cu for the Activation of α â€H of Methyl Ketones with Molecular Oxygen/Alcohol to Produce α â€Keto Acetals â€. Chinese Journal of Chemistry, 2020, 38, 1045-1051.	4.9	30
53	Polyaniline-Supported Copper-Catalyzed Buchwald-Hartwig Couplings of Pyrimidin-2-amines. Chinese Journal of Organic Chemistry, 2020, 40, 2570.	1.3	11
54	Design and preparation of magnetic mesoporous melamine–formaldehyde resin: A novel material for preâ€concentration and determination of silver. Applied Organometallic Chemistry, 2019, 33, e5112.	3.5	6

#	Article	IF	CITATIONS
55	Organotellurium catalysis-enabled utilization of molecular oxygen as oxidant for oxidative deoximation reactions under solvent-free conditions. Science Bulletin, 2019, 64, 1280-1284.	9.0	53
56	Direct access to xylene solution of polyanilines via emulsion polymerization-extraction method facilitating the preparation of conductive film materials. Materials Letters, 2019, 254, 361-363.	2.6	10
57	Synthesis of LiPF ₆ Using CaF ₂ as the Fluorinating Agent Directly: An Advanced Industrial Production Process Fully Harmonious to the Environments. Industrial & Engineering Chemistry Research, 2019, 58, 20491-20494.	3.7	15
58	Magnetically separable mesoporous silicaâ€supported palladium nanoparticleâ€catalyzed selective hydrogenation of naphthalene to tetralin. Applied Organometallic Chemistry, 2019, 33, e5204.	3.5	34
59	Hydrothermal synthesis of Î ³ -MnOOH nanowires using sapless leaves as the reductant: an effective catalyst for the regio-specific epoxidation of Î ² -ionone. Sustainable Energy and Fuels, 2019, 3, 2572-2576.	4.9	7
60	Recent advances on deoximation: From stoichiometric reaction to catalytic reaction. Chinese Chemical Letters, 2019, 30, 937-941.	9.0	57
61	Photocatalysis: Highly Crystalline Kâ€Intercalated Polymeric Carbon Nitride for Visibleâ€Light Photocatalytic Alkenes and Alkynes Deuterations (Adv. Sci. 1/2019). Advanced Science, 2019, 6, 1970002.	11.2	0
62	Synthesis of Cu-doped polyaniline nanocomposites (nano Cu@PANI) via the H2O2-promoted oxidative polymerization of aniline with copper salt. Materials Letters, 2019, 242, 170-173.	2.6	25
63	Organoselenium-Catalyzed Polymerization of Aniline with Hydrogen Peroxide as Oxidant. Synlett, 2019, 30, 1703-1707.	1.8	16
64	Selenium-doped carbon: An unexpected efficient solid acid catalyst for Beckmann rearrangement of ethyl 2-(2-aminothiazole-4-yl)-2-hydroxyiminoacetate. Catalysis Communications, 2019, 129, 105730.	3.3	33
65	Unexpected Pd/C-catalyzed room temperature and atmospheric pressure hydrogenation of 2-methylenecyclobutanones. Molecular Catalysis, 2019, 474, 110450.	2.0	13
66	Reaction of aniline with KMnO4 to synthesize polyaniline-supported Mn nanocomposites: An unexpected heterogeneous free radical scavenger. Materials Letters, 2019, 251, 222-225.	2.6	10
67	Visibleâ€Lightâ€Driven Photocatalytic Hydrogenation of Olefins Using Water as the H Source. ChemCatChem, 2019, 11, 2596-2599.	3.7	28
68	A facile approach to constructing Pd@PCN–Se nano-composite catalysts for selective alcohol oxidation reactions. Journal of Materials Chemistry A, 2019, 7, 10918-10923.	10.3	41
69	Sodium Selenosulfate from Sodium Sulfite and Selenium Powder: An Odorless Selenylating Reagent for Alkyl Halides to Produce Dialkyl Diselenide Catalysts. Synlett, 2019, 30, 1698-1702.	1.8	6
70	Highly Crystalline Kâ€Intercalated Polymeric Carbon Nitride for Visibleâ€Light Photocatalytic Alkenes and Alkynes Deuterations. Advanced Science, 2019, 6, 1801403.	11.2	67
71	Ironâ€Enabled Utilization of Air as the Terminal Oxidant Leading to Aerobic Oxidative Deoximation by Organoselenium Catalysis. Advanced Synthesis and Catalysis, 2019, 361, 603-610.	4.3	46
72	A costâ€effective shortcut to prepare organoselenium catalysts via decarboxylative coupling of phenylacetic acid with elemental selenium. Applied Organometallic Chemistry, 2019, 33, e4599.	3.5	19

#	Article	IF	CITATIONS
73	DMSOâ€Triggered Complete Oxygen Transfer Leading to Accelerated Aqueous Hydrolysis of Organohalides under Mild Conditions. ChemSusChem, 2019, 12, 2994-2998.	6.8	12
74	Design and synthesis of ruthenium nanoparticles on polyanilines (nano Ru@PANIs) via Ru-catalyzed aerobic oxidative polymerization of anilines. Materials Letters, 2019, 234, 216-219.	2.6	14
75	Gram-scale preparation of dialkylideneacetones through Ca(OH)2-catalyzed Claisen-Schmidt condensation in dilute aqueous EtOH. Chinese Chemical Letters, 2019, 30, 263-265.	9.0	29
76	Design and Preparation of Poly‧elenides: Easily Fabricated and Efficient Organoselenium Materials for Heavy Metal Removing and Recycling. Applied Organometallic Chemistry, 2018, 32, e4332.	3.5	32
77	Probing the support effect at the molecular level in the polyaniline-supported palladium nanoparticle-catalyzed Ullmann reaction of aryl iodides. Journal of Catalysis, 2018, 360, 250-260.	6.2	52
78	Design of Free Triblock Polylysine- <i>b</i> -Polyleucine- <i>b</i> -Polylysine Chains for Gene Delivery. Biomacromolecules, 2018, 19, 1347-1357.	5.4	13
79	Design and fabrication of low-loading palladium nano particles on polyaniline (nano Pd@PANI): An effective catalyst for Suzuki cross-coupling with high TON. Materials Letters, 2018, 215, 65-67.	2.6	24
80	Honeycomb-shaped PtSnNa/γ-Al2O3/cordierite monolithic catalyst with improved stability and selectivity for propane dehydrogenation. Chinese Chemical Letters, 2018, 29, 884-886.	9.0	34
81	Visible-light-induced iminyl radical formation <i>via</i> electron-donor–acceptor complexes: a photocatalyst-free approach to phenanthridines and quinolines. Organic Chemistry Frontiers, 2018, 5, 977-981.	4.5	51
82	Visible light-promoted, iodine-catalyzed selenoalkoxylation of olefins with diselenides and alcohols in the presence of hydrogen peroxide/air oxidant: an efficient access to α-alkoxyl selenides. Science China Chemistry, 2018, 61, 294-299.	8.2	56
83	Design and fabrication of the Fe/Cl-doped Al foil-supported copper nano-material as the high turnover number catalyst for Suzuki coupling. Materials Letters, 2018, 226, 63-66.	2.6	12
84	Recent advances on controllable and selective catalytic oxidation of cyclohexene. Chinese Journal of Catalysis, 2018, 39, 899-907.	14.0	56
85	Catalytic dehydrogenation of propane to propylene over highly active PtSnNa/γ-Al 2 O 3 catalyst. Chinese Chemical Letters, 2018, 29, 475-478.	9.0	35
86	Pd/Mn Bimetallic Relay Catalysis for Aerobic Aldoxime Dehydration to Nitriles. Advanced Synthesis and Catalysis, 2018, 360, 784-790.	4.3	28
87	An oxygenâ€ŧolerant photoâ€induced metalâ€free reversible additionâ€fragmentation chain transfer polymerization. Journal of Polymer Science Part A, 2018, 56, 2437-2444.	2.3	6
88	Copper-Catalyzed Regioselective and Stereoselective Coupling of Grignard Reagents with Pent-1-en-4-yn-3-yl Benzoates: A Shortcut to (<i>Z</i>) <i>-</i> 1,5-Disubstituted Pent-3-en-1-ynes from Accessible Starting Materials. Journal of Organic Chemistry, 2018, 83, 14158-14164.	3.2	5
89	Stereodivergent Synthesis of αâ€Aminomethyl Cinnamyl Ethers <i>via</i> Photoredoxâ€Catalyzed Radical Relay Reaction. Chinese Journal of Chemistry, 2018, 36, 1147-1150.	4.9	26
90	Alcohol-based Michaelis–Arbuzov reaction: an efficient and environmentally-benign method for C–P(O) bond formation. Green Chemistry, 2018, 20, 3408-3413.	9.0	47

#	Article	IF	CITATIONS
91	Specific N-Alkylation of Hydroxypyridines Achieved by a Catalyst- and Base-Free Reaction with Organohalides. Journal of Organic Chemistry, 2018, 83, 6769-6775.	3.2	26
92	A novel Pt/Câ€catalyzed transfer hydrogenation reaction of <i>p</i> â€benzoquinone to produce <i>p</i> â€hydroquinone using cyclohexanone as an unexpectedly effective hydrogen source. Applied Organometallic Chemistry, 2018, 32, e4505.	3.5	17
93	Fabrication of Se/C using carbohydrates as biomass starting materials: an efficient catalyst for regiospecific epoxidation of β-ionone with ultrahigh turnover numbers. Catalysis Science and Technology, 2018, 8, 5017-5023.	4.1	53
94	Calcium-catalyzed reactions of element-H bonds. Science Bulletin, 2018, 63, 1010-1016.	9.0	31
95	Copper-Catalyzed Selectivity-Switchable Dehydration/Beckmann Rearrangement Reactions of Aldoxime. Chinese Journal of Organic Chemistry, 2018, 38, 2736.	1.3	13
96	Enantioselective NiH/Pmrox atalyzed 1,2â€Reduction of α,βâ€Unsaturated Ketones. Angewandte Chemie - International Edition, 2017, 56, 2022-2025.	13.8	60
97	Enantioselective NiH/Pmroxâ€Catalyzed 1,2â€Reduction of α,βâ€Unsaturated Ketones. Angewandte Chemie, 20 129, 2054-2057.	¹⁷ 2:0	14
98	Efficient Generation of C–S Bonds <i>via</i> a Byâ€Productâ€Promoted Selective Coupling of Alcohols, Organic Halides, and Thiourea. Advanced Synthesis and Catalysis, 2017, 359, 1649-1655.	4.3	37
99	Synthesis of 2-substituted quinazolines by CsOH-mediated direct aerobic oxidative cyclocondensation of 2-aminoarylmethanols with nitriles in air. Green Chemistry, 2017, 19, 2945-2951.	9.0	67
100	A scalable production of anisonitrile through organoselenium-catalyzed dehydration of anisaldoxime under solventless conditions. Applied Catalysis A: General, 2017, 541, 107-111.	4.3	31
101	Practical preparation of methyl isobutyl ketone by stepwise isopropylation reaction of acetone. Molecular Catalysis, 2017, 432, 99-103.	2.0	14
102	Diastereoselective Total Synthesis of the <i>Euphorbia</i> Diterpenoid Pepluanolâ€A: A Reductive Annulation Approach. Angewandte Chemie, 2017, 129, 9024-9027.	2.0	12
103	PtSnNa/SUZ-4: An efficient catalyst for propane dehydrogenation. Chinese Journal of Catalysis, 2017, 38, 529-536.	14.0	27
104	iNGR-Modified Liposomes for Tumor Vascular Targeting and Tumor Tissue Penetrating Delivery in the Treatment of Glioblastoma. Molecular Pharmaceutics, 2017, 14, 1811-1820.	4.6	34
105	Green and Practical Oxidative Deoximation of Oximes to Ketones or Aldehydes with Hydrogen Peroxide/Air by Organoselenium Catalysis. Advanced Synthesis and Catalysis, 2017, 359, 1194-1201.	4.3	79
106	Easily fabricated and recyclable Pd&Cu@Al catalyst for gram-scale phosphine-free Heck reactions with high TON. Science Bulletin, 2017, 62, 1325-1330.	9.0	42
107	Efficient dehydrative alkylation of thiols with alcohols catalyzed by alkyl halides. Organic and Biomolecular Chemistry, 2017, 15, 9638-9642.	2.8	21
108	Poly(N-isopropylacrylamide-co- <scp>l</scp> -proline)-catalyzed Claisen–Schmidt and Knoevenagel condensations: unexpected enhanced catalytic activity of the polymer catalyst. RSC Advances, 2017, 7, 48214-48221.	3.6	20

#	Article	IF	CITATIONS
109	Ruthenium-catalyzed oxidative decyanative cross-coupling of acetonitriles with amines in air: a general access to primary to tertiary amides under mild conditions. Catalysis Science and Technology, 2017, 7, 3747-3757.	4.1	19
110	Novel phosphine oxide-based electron-transporting materials for efficient phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 8579-8585.	5.5	7
111	Solid-State 77Se NMR of Organoselenium Compounds through Cross Polarization Magic Angle Spinning (CPMAS) Method. Scientific Reports, 2017, 7, 6376.	3.3	5
112	Organoselenium-Catalyzed Oxidative Câ•C Bond Cleavage: A Relatively Green Oxidation of Alkenes into Carbonyl Compounds with Hydrogen Peroxide. Journal of Organic Chemistry, 2017, 82, 9342-9349.	3.2	73
113	A divergent [5+2] cascade approach to bicyclo[3.2.1]octanes: facile synthesis of ent-kaurene and cedrene-type skeletons. Chemical Communications, 2017, 53, 8435-8438.	4.1	23
114	Diastereoselective Total Synthesis of the <i>Euphorbia</i> Diterpenoid Pepluanolâ€A: A Reductive Annulation Approach. Angewandte Chemie - International Edition, 2017, 56, 8898-8901.	13.8	28
115	Pt/WO3/ZrO2-Catalyzed Selective Hydrogenolysis of Glycerol to Produce 1,3-Propanediol. Chinese Journal of Organic Chemistry, 2017, 37, 753.	1.3	6
116	Investigation on Preparation of p-Benzoquinone through the Organoselenium-Catalyzed Selective Oxidation of Phenol. Chinese Journal of Organic Chemistry, 2017, 37, 2115.	1.3	22
117	Organoseleniumâ€Catalyzed Oxidative Ring Expansion of Methylenecyclopropanes with Hydrogen Peroxide. ChemCatChem, 2016, 8, 1033-1037.	3.7	49
118	l -Proline and thiourea co-catalyzed condensation of acetone. Tetrahedron, 2016, 72, 4076-4080.	1.9	14
119	Rhenium-promoted Pt/WO ₃ /ZrO ₂ : an efficient catalyst for aqueous glycerol hydrogenolysis under reduced H ₂ pressure. RSC Advances, 2016, 6, 86663-86672.	3.6	14
120	Design and Preparation of Polymer Resin-Supported Proline Catalyst with Industrial Application Potential. ChemistrySelect, 2016, 1, 1933-1937.	1.5	7
121	Advanced MnO _{<i>x</i>} /TiO ₂ Catalyst with Preferentially Exposed Anatase {001} Facet for Low-Temperature SCR of NO. ACS Catalysis, 2016, 6, 5807-5815.	11.2	181
122	PtSnNa@SUZ-4-catalyzed propane dehydrogenation. Applied Catalysis A: General, 2016, 527, 30-35.	4.3	27
123	Palladium nanoparticles on polyaniline (Pd@PANI): A practical catalyst for Suzuki cross-couplings. Materials Letters, 2016, 184, 312-314.	2.6	38
124	Gram-Scale Preparation of Pd@PANI: A Practical Catalyst Reagent for Copper-Free and Ligand-Free Sonogashira Couplings. Organic Process Research and Development, 2016, 20, 2124-2129.	2.7	72
125	Ca(OH)2-Catalyzed Condensation of Aldehydes with Methyl ketones in Dilute Aqueous Ethanol: A Comprehensive Access to \hat{I}_{\pm},\hat{I}^2 -Unsaturated Ketones. Scientific Reports, 2016, 6, 30432.	3.3	12
126	Construction of boronate ester based single-layered covalent organic frameworks. Chemical Communications, 2016, 52, 13771-13774.	4.1	29

#	Article	IF	CITATIONS
127	Design and preparation of a polymer resin-supported organoselenium catalyst with industrial potential. Journal of Materials Chemistry A, 2016, 4, 10828-10833.	10.3	73
128	A Practical Preparation of Imatinib Base. Synlett, 2016, 27, 2233-2236.	1.8	8
129	Organoselenium-catalyzed selectivity-switchable oxidation of β-ionone. Catalysis Science and Technology, 2016, 6, 1804-1809.	4.1	64
130	Promotional effect of iron oxide on the catalytic properties of Fe–MnO _x /TiO ₂ (anatase) catalysts for the SCR reaction at low temperatures. Catalysis Science and Technology, 2016, 6, 1772-1778.	4.1	54
131	Investigation on Preparation of Methyl Isobutyl Ketone through the Reduction by Isopropanol. Chinese Journal of Organic Chemistry, 2016, 36, 2232.	1.3	4
132	The Aerobic Oxidation and C=C Bond Cleavage of Styrenes Catalyzed by Cerium(IV) Ammonium Nitrate (CAN). Journal of the Chinese Chemical Society, 2015, 62, 479-482.	1.4	24
133	Design and application of the recyclable poly(<scp>l</scp> -proline-co-piperidine) catalyst for the synthesis of mesityl oxide from acetone. RSC Advances, 2015, 5, 42178-42185.	3.6	20
134	Heterocycles from methylenecyclopropanes. Organic and Biomolecular Chemistry, 2015, 13, 8379-8392.	2.8	112
135	Organohalide-catalyzed dehydrative O-alkylation between alcohols: a facile etherification method for aliphatic ether synthesis. Green Chemistry, 2015, 17, 2774-2779.	9.0	56
136	Dehydration of Aldoximes Using PhSe(O)OH as the <i>Pre</i> -Catalyst in Air. Organic Letters, 2015, 17, 5840-5842.	4.6	95
137	Organoseleniumâ€Catalyzed Baeyer–Villiger Oxidation of α,βâ€Unsaturated Ketones by Hydrogen Peroxide to Access Vinyl Esters. Advanced Synthesis and Catalysis, 2015, 357, 955-960.	4.3	75
138	Injectable supramolecular hydrogels via inclusion complexation of mPEG-grafted copolyglutamate with α-cyclodextrin. Chinese Journal of Polymer Science (English Edition), 2015, 33, 1140-1149.	3.8	10
139	Recyclable (PhSe) ₂ -catalyzed selective oxidation of isatin by H ₂ O ₂ : a practical and waste-free access to isatoic anhydride under mild and neutral conditions. Catalysis Science and Technology, 2015, 5, 4830-4838.	4.1	60
140	Hypervalent iodine mediated alkene difunctionalization of vinylphenols: diastereoselective synthesis of substituted indoles and indolizines. Chemical Communications, 2015, 51, 6399-6402.	4.1	12
141	Proline and secondary amine co-catalyzed condensation of cyclobutanone with aldehydes: a facile access to 2-methylenecyclobutanones under near neutral conditions. Tetrahedron Letters, 2015, 56, 6116-6119.	1.4	12
142	Heck Reactions Catalyzed by Ultrasmall and Uniform Pd Nanoparticles Supported on Polyaniline. Journal of Organic Chemistry, 2015, 80, 8677-8683.	3.2	116
143	Tuning the phase transition temperature of thermal-responsive OEGylated poly- <scp>l</scp> -glutamate via random copolymerization with <scp>l</scp> -alanine. Soft Matter, 2015, 11, 545-550.	2.7	19
144	Micellization behavior of the ionic liquid lauryl isoquinolinium bromide in aqueous solution. Colloid and Polymer Science, 2014, 292, 1111-1120.	2.1	16

#	Article	IF	CITATIONS
145	Facile synthesis of 2-methylenecyclobutanones via Ca(OH) ₂ -catalyzed direct condensation of cyclobutanone with aldehydes and (PhSe) ₂ -catalyzed Baeyer–Villiger oxidation to 4-methylenebutanolides. Green Chemistry, 2014, 16, 287-293.	9.0	85
146	Efficient and selective nitrile hydration reactions in water catalyzed by an unexpected dimethylsulfinyl anion generated in situ from CsOH and DMSO. Green Chemistry, 2014, 16, 2136-2141.	9.0	56
147	Synthesis of heterocycle-tethered acylbenzofurans and benzodifurans from odorless and recyclable organoseleno polystyrene resin. RSC Advances, 2014, 4, 49170-49179.	3.6	12
148	Sulfur–silicon bond activation catalysed by Cl/Br ions: waste-free synthesis of unsymmetrical thioethers by replacing fluoride catalysis and fluorinated substrates in SNAr reactions. Green Chemistry, 2014, 16, 3444.	9.0	38
149	Practical and scalable preparation of 2-methyleneglutaronitrile via an efficient and highly selective head-to-tail dimerization of acrylonitrile catalysed by low-loading of tricyclohexylphosphine. RSC Advances, 2014, 4, 19122.	3.6	14
150	Recyclable 1,2â€bis[3,5â€bis(trifluoromethyl)phenyl]diselaneâ€catalyzed oxidation of cyclohexene with H ₂ O ₂ : a practical access to <i>trans</i> â€1,2â€cyclohexanediol. Applied Organometallic Chemistry, 2014, 28, 652-656.	3.5	59
151	Organoselenium-Catalyzed Mild Dehydration of Aldoximes: An Unexpected Practical Method for Organonitrile Synthesis. Organic Letters, 2014, 16, 1346-1349.	4.6	141
152	A Review on Catalyzed Dimerization of Acrylonitrile. Chinese Journal of Organic Chemistry, 2014, 34, 1986.	1.3	6
153	Direct Synthesis of Methylene-1,2-dichalcogenolanes via Radical [3 + 2] Cycloaddition of Methylenecyclopropanes with Elemental Chalcogens. Organic Letters, 2013, 15, 144-147.	4.6	75
154	Editorial (Hot Topic: Introduction to Green Techniques in Medicine Synthesis). Mini-Reviews in Medicinal Chemistry, 2013, 13, 783-783.	2.4	3
155	Access to Cyclohexane-1,2-diol through the Diphenyldiselenide Catalyzed Oxidation of Cyclohexene by Hydrogen Peroxide. Chinese Journal of Organic Chemistry, 2013, 33, 1096.	1.3	40
156	Pd@aluminium foil: a highly efficient and environment-friendly "tea bag―style catalyst with high TON. Catalysis Science and Technology, 2012, 2, 1136.	4.1	23
157	Pd-Nanoparticle (PdNP)-catalyzed Negishi Coupling of Acid Chlorides using Zinc Reagents. Organic Preparations and Procedures International, 2012, 44, 169-174.	1.3	4
158	An Investigation on the Transition Metal Catalyzed Selective Additions of Styrenes with Diacetoxyiodobenzene (DIB)- Tetrabutylamidebromide (TBAB) System. Chinese Journal of Organic Chemistry, 2012, 32, 1439.	1.3	4
159	Metal Triflate–Catalyzed Se-Se Bond Cleavage and the Selective Additions Under Mild Conditions. Synthetic Communications, 2011, 41, 1958-1968.	2.1	7
160	Protection from H1N1 Influenza Virus Infections in Mice by Supplementation with Selenium: A Comparison with Selenium-Deficient Mice. Biological Trace Element Research, 2011, 141, 254-261.	3.5	65
161	Iron salt, a cheap, highly efficient and environment-friendly metal catalyst for Se–Se bond cleavage and the further reaction with methylenecyclopropanes under mild conditions. Journal of Organometallic Chemistry, 2011, 696, 2228-2233.	1.8	48
162	Recent Advances on the Preparation and Reactivity of Methylenecyclopropanes. Organic Preparations and Procedures International, 2011, 43, 209-259.	1.3	90

#	Article	IF	CITATIONS
163	Reaction of Methylenecyclobutanes with NXS-H2O System. Synthetic Communications, 2011, 41, 3237-3245.	2.1	8
164	Cerium(IV) Ammonium Nitrate–Mediated Oxidation of Mono-aryl-substituted Methylenecyclobutanes: A Convenient Method for the Synthesis of Spirocyclobutyl-1,2-dioxethanes. Synthetic Communications, 2011, 41, 2530-2538.	2.1	15
165	Palladium-Catalyzed Reaction of Olefins with PhI(OAc)2-TBAB System: An Efficient and Highly Selective Bisfunctionalization Strategy. Synlett, 2011, 2011, 579-581.	1.8	13
166	Difunctional additions to 1-cyclopropylallenes: an efficient and stereospecific method for the synthesis of 2,6-difunctional-1,3-hexadienes. Tetrahedron Letters, 2009, 50, 1947-1950.	1.4	8
167	Lewis Acid Catalyzed Reaction of Methylenecyclopropanes with 1,2-Diphenyldiselane or 1,2-Di- <i>p</i> -tolyldisulfane. Journal of Organic Chemistry, 2009, 74, 5087-5089.	3.2	44
168	Urea–Hydrogen Peroxide Complex: A Selective Oxidant in the Synthesis of 2-Phenylselenyl-1,3-butadienes. Synthetic Communications, 2008, 38, 3142-3150.	2.1	8
169	Halohydroxylation of 1-Cyclopropylallenes: An Efficient and Stereoselective Method for the Preparation of Multisubstituted Olefins. Journal of Organic Chemistry, 2008, 73, 6895-6898.	3.2	15
170	Electrophilic Addition to 1-Cyclopropylallenes: A Highly Efficient and Stereoselective Method for the Preparation of 6-Substituted-1,3-hexadienes. Synlett, 2008, 2008, 1331-1334.	1.8	3
171	Reaction of 1-Cyclopropylallenes with Phenylselenyl Bromide: A Highly Efficient and Stereoselective Method for the Preparation of 2-Phenylselenyl-6-bromo-1,3-hexadienes. Synlett, 2007, 2007, 2919-2921.	1.8	1
172	Copper(II) Acetate Mediated Reactions of Methylenecyclopropane and Diphenyl Diselenide. Synlett, 2007, 2007, 1371-1374.	1.8	6
173	Multicomponent reactions of allenes, diaryl diselenides, and nucleophiles in the presence of iodosobenzene diacetate: direct synthesis of 3-functionalized-2-arylselenyl substituted allyl derivatives. Tetrahedron Letters, 2007, 48, 925-927.	1.4	52
174	Free radical mediated bromization of methylenecyclopropanes: Preparation of 2,4-dibromobutenes without transition metal. Chinese Chemical Letters, 2007, 18, 121-123.	9.0	12
175	Synthesis of 3-Phenylsulfanyl-1,2-dihydronaphthalenes from MethyleneÂcyclopropanes and Benzenethiol. Synlett, 2006, 2006, 0423-0426.	1.8	7
176	Reaction of Methylenecyclopropanes and Diphenyl Diselenide under Visible-Light Irradiation. Synlett, 2006, 2136-2138.	1.8	6
177	Tandem Michael—Nucleophilic Addition of 2-Cyclopropylidene Propionaldehyde — A Novel Method for the Synthesis of Spirocyclopropane-Annulated Heterocycles ChemInform, 2005, 36, no.	0.0	0
178	The Reaction of Alkylenecyclopropanes and Diethyl Phosphite: A Novel ÂMethod for the Preparation of Diethyl 3,4-Dihydro-2-naphthylphosphonates and 3-Butenyl Ethyl Phosphates. Synlett, 2005, 2005, 2953-2957.	1.8	28
179	Tandem Michael–Nucleouphilic Addition of 2 yclopropylidene Propionaldehyde—A Novel Method for the Synthesis of Spirocyclopropaneâ€Annulated Heterocycles. Synthetic Communications, 2005, 35, 1253-1261.	2.1	12
180	Synthesis of (Ïâ€formylphenyl)azo calix[4]arenes. Chinese Journal of Chemistry, 2004, 22, 498-501.	4.9	2

L	Yu	
LEI	ιu	

#	Article	IF	CITATIONS
181	PhSe(O)OH/Al(NO3)3-catalyzed selectivity controllable oxidation of sulphide owing to the synergistic effect of Se, Al3+ and nitrate. Reaction Chemistry and Engineering, 0, , .	3.7	2