
Nicos Ladommatos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3156011/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The influence of molecular structure of fatty acid monoalkyl esters on diesel combustion. Combustion and Flame, 2009, 156, 1396-1412.	2.8	211
2	The effect of fuel cetane improver on diesel pollutant emissions. Fuel, 1996, 75, 8-14.	3.4	118
3	Influence of solvent selection and extraction temperature on yield and composition of lipids extracted from spent coffee grounds. Industrial Crops and Products, 2018, 119, 49-56.	2.5	102
4	Some effects of molecular structure of single hydrocarbons on sooting tendency. Fuel, 1996, 75, 114-124.	3.4	93
5	The influence of straight vegetable oil fatty acid composition on compression ignition combustion and emissions. Fuel, 2015, 143, 131-143.	3.4	91
6	Effect of hydrogen-diesel fuel co-combustion on exhaust emissions with verification using an in–cylinder gas sampling technique. International Journal of Hydrogen Energy, 2014, 39, 15088-15102.	3.8	73
7	Systematic study of the effect of the hydroxyl functional group in alcohol molecules on compression ignition and exhaust gas emissions. Fuel, 2015, 153, 650-663.	3.4	58
8	Effects of Oxygen Content of Fuels on Combustion and Emissions of Diesel Engines. Energies, 2016, 9, 28.	1.6	56
9	An overview of the effects of fuel molecular structure on the combustion and emissions characteristics of compression ignition engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 232, 90-105.	1.1	55
10	Hydrogen-diesel fuel co-combustion strategies in light duty and heavy duty CI engines. International Journal of Hydrogen Energy, 2018, 43, 9046-9058.	3.8	54
11	Effect of Solvent Extraction Parameters on the Recovery of Oil From Spent Coffee Grounds for Biofuel Production. Waste and Biomass Valorization, 2019, 10, 253-264.	1.8	49
12	Combustion and emissions characterization of terpenes with a view to their biological production in cyanobacteria. Fuel, 2013, 111, 670-688.	3.4	48
13	The effect of varying EGR and intake air boost on hydrogen-diesel co-combustion in CI engines. International Journal of Hydrogen Energy, 2017, 42, 6369-6383.	3.8	48
14	Combustion and emissions characteristics of toluene/n-heptane and 1-octene/n-octane binary mixtures in a direct injection compression ignition engine. Combustion and Flame, 2013, 160, 2141-2158.	2.8	46
15	Equations for predicting the cetane number of diesel fuels from their physical properties. Fuel, 1995, 74, 1083-1093.	3.4	45
16	Influence of combusting methane-hydrogen mixtures on compression–ignition engine exhaust emissions and in-cylinder gas composition. International Journal of Hydrogen Energy, 2017, 42, 2381-2396.	3.8	45
17	Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine. Energy, 2017, 124, 397-412.	4.5	43
18	CHARACTERISTICS OF HOMOGENEOUS CHARGE COMPRESSION IGNITION (HCCI) COMBUSTION AND EMISSIONS OF n-HEPTANE. Combustion Science and Technology, 2005, 177, 2113-2150.	1.2	41

NICOS LADOMMATOS

#	Article	IF	CITATIONS
19	The Influence of Fatty Acid Ester Alcohol Moiety Molecular Structure on Diesel Combustion and Emissions. Energy & Fuels, 2012, 26, 1912-1927.	2.5	41
20	lgnition control of homogeneous-charge compression ignition (HCCI) combustion through adaptation of the fuel molecular structure by reaction with ozone. Fuel, 2010, 89, 3178-3184.	3.4	37
21	Effects of unsaturation of C2 and C3 hydrocarbons on the formation of PAHs and on the toxicity of soot particles. Fuel, 2017, 194, 306-320.	3.4	32
22	Soot generation of diesel fuels with substantial amounts of oxygen-bearing compounds added. Fuel, 2007, 86, 345-352.	3.4	31
23	Impact of increasing methyl branches in aromatic hydrocarbons on diesel engine combustion and emissions. Fuel, 2018, 216, 579-588.	3.4	31
24	Algal biomass and diesel emulsions: An alternative approach for utilizing the energy content of microalgal biomass in diesel engines. Applied Energy, 2016, 172, 80-95.	5.1	29
25	Compression Ignition and Exhaust Gas Emissions of Fuel Molecules Which Can Be Produced from Lignocellulosic Biomass: Levulinates, Valeric Esters, and Ketones. Energy & Fuels, 2015, 29, 5875-5884.	2.5	28
26	The importance of double bond position and cis–trans isomerisation in diesel combustion and emissions. Fuel, 2013, 105, 477-489.	3.4	26
27	The influence of various oxygenated functional groups in carbonyl and ether compounds on compression ignition and exhaust gas emissions. Fuel, 2015, 159, 697-711.	3.4	25
28	Effect of Biofuels on Nanoparticle Emissions from Spark- and Compression-ignited Single-cylinder Engines with Same Exhaust Displacement Volume. Energy & Fuels, 2009, 23, 4363-4369.	2.5	23
29	An investigation into the conversion of specific carbon atoms in oleic acid and methyl oleate to particulate matter in a diesel engine and tube reactor. Fuel, 2015, 153, 604-611.	3.4	22
30	Conversion of oxygenated and hydrocarbon molecules to particulate matter using stable isotopes as tracers. Combustion and Flame, 2014, 161, 2966-2974.	2.8	21
31	Influence of carbon number of C1–C7 hydrocarbons on PAH formation. Fuel, 2018, 228, 140-151.	3.4	21
32	Influence of Combustion Characteristics and Fuel Composition on Exhaust PAHs in a Compression Ignition Engine. Energies, 2019, 12, 2575.	1.6	20
33	Influence of Carbonate Ester Molecular Structure on Compression Ignition Combustion and Emissions. Energy & Fuels, 2013, 27, 5222-5245.	2.5	16
34	The impact of ignition delay and further fuel properties on combustion and emissions in a compression ignition engine. Fuel, 2020, 262, 116155.	3.4	15
35	Combustion and emissions characteristics of date pit methyl ester in a single cylinder direct injection diesel engine. Fuel, 2019, 243, 162-171.	3.4	13
36	Integrated strategies for water removal and lipid extraction from coffee industry residues. Sustainable Energy Technologies and Assessments, 2018, 29, 26-35.	1.7	12

NICOS LADOMMATOS

#	Article	IF	CITATIONS
37	Molecular Structure of Photosynthetic Microbial Biofuels for Improved Engine Combustion and Emissions Characteristics. Frontiers in Bioengineering and Biotechnology, 2015, 3, 49.	2.0	11
38	In-Cylinder Polycyclic Aromatic Hydrocarbons Sampled during Diesel Engine Combustion. Environmental Science & Technology, 2021, 55, 571-580.	4.6	11
39	An Experimental Study on Effects of Fuel Oxygenates on Diesel Engine Combustion. Energy Procedia, 2015, 66, 17-20.	1.8	10
40	Compression ignition and pollutant emissions of large alkylbenzenes. Fuel, 2016, 172, 200-208.	3.4	10
41	Transesterification of high-acidity spent coffee ground oil and subsequent combustion and emissions characteristics in a compression-ignition engine. Fuel, 2019, 247, 257-271.	3.4	10
42	A systematic study into the effect of lignocellulose-derived biofuels on the combustion and emissions of fossil diesel blends in a compression ignition engine. Fuel, 2022, 313, 122663.	3.4	10
43	Comparative analysis of H2-diesel co-combustion in a single cylinder engine and a chassis dynamometer vehicle. International Journal of Hydrogen Energy, 2019, 44, 1239-1252.	3.8	9
44	Quantification of the Fraction of Particulate Matter Derived from a Range of13C-Labeled Fuels Blended into Heptane, Studied in a Diesel Engine and Tube Reactor. Energy & Fuels, 2016, 30, 7678-7690.	2.5	7
45	Measurement of soot mass and PAHs during the pyrolysis of C2C4 alcohols at high temperatures. Combustion and Flame, 2022, 236, 111803.	2.8	7
46	Development of a Fast-Acting, Time-Resolved Gas Sampling System for Combustion and Fuels Analysis. SAE International Journal of Engines, 0, 9, 1102-1116.	0.4	6
47	Influence of unsaturation of hydrocarbons on the characteristics and carcinogenicity of soot particles. Journal of Analytical and Applied Pyrolysis, 2020, 151, 104900.	2.6	6
48	1-hexene autoignition control by prior reaction with ozone. Fuel Processing Technology, 2016, 145, 90-95.	3.7	5
49	Isotopic Tracers for Combustion Research. Combustion Science and Technology, 2017, 189, 660-682.	1.2	5
50	Re-assessing the toxicity of particles from biodiesel combustion: A quantitative analysis of in vitro studies. Atmospheric Environment, 2021, 261, 118570.	1.9	4
51	Diffusion- and Homogeneous-Charge Combustion of Volatile Ethers in a Compression Ignition Engine. Energy & Fuels, 2009, 23, 5865-5878.	2.5	3
52	FACTORS AFFECTING THE EFFICIENCY OF PRESSURIZED SOLVENT EXTRACTION OF OIL FROM SPENT COFFEE GROUNDS. Detritus, 2019, , .	0.4	3
53	Influence of air rifle pellet geometryon aerodynamic drag. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2019, , 175433711983110.	0.4	2
54	Drag coefficients of air rifle pellets with wide range of geometries. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 5365-5384.	1.1	1

#	Article	IF	CITATIONS
55	Opening the black box: Soil microcosm experiments reveal soot black carbon short-term oxidation and influence on soil organic carbon mineralisation. Science of the Total Environment, 2021, 801, 149659.	3.9	Ο
56	Effect of equalising ignition delay on combustion and soot emission characteristics of model fuel blends. Journal of Central South University, 2022, 29, 89-101.	1.2	0