Stefano Toldo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3155903/publications.pdf Version: 2024-02-01

		71102	32842
109	11,188	41	100
papers	citations	h-index	g-index
114	114	114	20991
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19725-19730.	7.1	501
3	The NLRP3 inflammasome in acute myocardial infarction. Nature Reviews Cardiology, 2018, 15, 203-214.	13.7	466
4	Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. Circulation Research, 2020, 126, 1260-1280.	4.5	391
5	Targeting Interleukin-1 in Heart Disease. Circulation, 2013, 128, 1910-1923.	1.6	253
6	Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1553-H1568.	3.2	235
7	Anti-Inflammatory Strategies for Ventricular Remodeling Following ST-Segment Elevation Acute Myocardial Infarction. Journal of the American College of Cardiology, 2014, 63, 1593-1603.	2.8	234
8	A Novel Pharmacologic Inhibitor of the NLRP3 Inflammasome Limits Myocardial Injury After Ischemia–Reperfusion in the Mouse. Journal of Cardiovascular Pharmacology, 2014, 63, 316-322.	1.9	215
9	Enhanced Interleukin-1 Activity Contributes to Exercise Intolerance in Patients with Systolic Heart Failure. PLoS ONE, 2012, 7, e33438.	2.5	184
10	Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischemia–reperfusion in the mouse. International Journal of Cardiology, 2016, 209, 215-220.	1.7	173
11	Suppression of Histone Deacetylases Worsens Right Ventricular Dysfunction after Pulmonary Artery Banding in Rats. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1402-1410.	5.6	143
12	Phosphodiesterase-5 Inhibitor, Tadalafil, Protects Against Myocardial Ischemia/Reperfusion Through Protein-Kinase G–Dependent Generation of Hydrogen Sulfide. Circulation, 2009, 120, S31-6.	1.6	136
13	Restenosis, Stent Thrombosis, and Bleeding Complications. Journal of the American College of Cardiology, 2018, 71, 1676-1695.	2.8	134
14	The Inflammasome in Myocardial Injury and Cardiac Remodeling. Antioxidants and Redox Signaling, 2015, 22, 1146-1161.	5.4	129
15	Pharmacologic Inhibition of the NLRP3 Inflammasome Preserves Cardiac Function After Ischemic and Nonischemic Injury in the Mouse. Journal of Cardiovascular Pharmacology, 2015, 66, 1-8.	1.9	128
16	Alpha-1 antitrypsin inhibits caspase-1 and protects from acute myocardial ischemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2011, 51, 244-251.	1.9	127
17	Interleukin-18 as a Therapeutic Target in Acute Myocardial Infarction and Heart Failure. Molecular Medicine, 2014, 20, 221-229.	4.4	114
18	Interleukin-18 mediates interleukin-1-induced cardiac dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1025-H1031.	3.2	110

#	Article	IF	CITATIONS
19	Inflammasome formation in the lungs of patients with fatal COVID-19. Inflammation Research, 2021, 70, 7-10.	4.0	104
20	Interleukinâ€1β modulation using a genetically engineered antibody prevents adverse cardiac remodelling following acute myocardial infarction in the mouse. European Journal of Heart Failure, 2010, 12, 319-322.	7.1	102
21	Galectin-1 Controls Cardiac Inflammation and Ventricular Remodeling during Acute Myocardial Infarction. American Journal of Pathology, 2013, 182, 29-40.	3.8	99
22	Induction of MicroRNA-21 With Exogenous Hydrogen Sulfide Attenuates Myocardial Ischemic and Inflammatory Injury in Mice. Circulation: Cardiovascular Genetics, 2014, 7, 311-320.	5.1	97
23	Interleukinâ€1β blockade improves cardiac remodelling after myocardial infarction without interrupting the inflammasome in the mouse. Experimental Physiology, 2013, 98, 734-745.	2.0	92
24	Interleukin- $1\hat{I}^2$ induces a reversible cardiomyopathy in the mouse. Inflammation Research, 2013, 62, 637-640.	4.0	89
25	Structural Insights of Benzenesulfonamide Analogues as NLRP3 Inflammasome Inhibitors: Design, Synthesis, and Biological Characterization. Journal of Medicinal Chemistry, 2018, 61, 5412-5423.	6.4	89
26	The NLRP3 Inflammasome Inhibitor, OLT1177 (Dapansutrile), Reduces Infarct Size and Preserves Contractile Function After Ischemia Reperfusion Injury in the Mouse. Journal of Cardiovascular Pharmacology, 2019, 73, 215-222.	1.9	85
27	ILâ€18 and infections: Is there a role for targeted therapies?. Journal of Cellular Physiology, 2021, 236, 1638-1657.	4.1	83
28	Reperfusion therapy with recombinant human relaxin-2 (Serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism. Cardiovascular Research, 2017, 113, cvw246.	3.8	78
29	NLRP3 Inflammasome in Acute Myocardial Infarction. Journal of Cardiovascular Pharmacology, 2019, 74, 175-187.	1.9	71
30	Targeting the NLRP3 inflammasome in cardiovascular diseases. , 2022, 236, 108053.		71
31	Interleukin-1 Trap Attenuates Cardiac Remodeling After Experimental Acute Myocardial Infarction in Mice. Journal of Cardiovascular Pharmacology, 2010, 55, 117-122.	1.9	70
32	Interleukin-1β Blockade Improves Left Ventricular Systolic/Diastolic Function and Restores Contractility Reserve in Severe Ischemic Cardiomyopathy in the Mouse. Journal of Cardiovascular Pharmacology, 2014, 64, 1-6.	1.9	67
33	Formation of the inflammasome in acute myocarditis. International Journal of Cardiology, 2014, 171, e119-e121.	1.7	67
34	Discovery of 5-(4-Hydroxyphenyl)-3-oxo-pentanoic Acid [2-(5-Methoxy-1H-indol-3-yl)-ethyl]-amide as a Neuroprotectant for Alzheimer's Disease by Hybridization of Curcumin and Melatonin. ACS Chemical Neuroscience, 2014, 5, 690-699.	3.5	66
35	Alterations in the Interleukin-1/Interleukin-1 Receptor Antagonist Balance Modulate Cardiac Remodeling following Myocardial Infarction in the Mouse. PLoS ONE, 2011, 6, e27923.	2.5	64
36	Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart. Cardiovascular Research, 2015, 105, 203-212.	3.8	64

#	Article	IF	CITATIONS
37	A high-sugar and high-fat diet impairs cardiac systolic and diastolic function in mice. International Journal of Cardiology, 2015, 198, 66-69.	1.7	61
38	GS-6201, a Selective Blocker of the A _{2B} Adenosine Receptor, Attenuates Cardiac Remodeling after Acute Myocardial Infarction in the Mouse. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 587-595.	2.5	60
39	Pharmacologic Inhibition of Myeloid Differentiation Factor 88 (MyD88) Prevents Left Ventricular Dilation and Hypertrophy After Experimental Acute Myocardial Infarction in the Mouse. Journal of Cardiovascular Pharmacology, 2010, 55, 385-390.	1.9	55
40	Effects of Prolastin C (Plasma-Derived Alpha-1 Antitrypsin) on the Acute Inflammatory Response in Patients With ST-Segment Elevation Myocardial Infarction (from the VCU-Alpha 1-RT Pilot Study). American Journal of Cardiology, 2015, 115, 8-12.	1.6	51
41	A mouse model of heart failure with preserved ejection fraction due to chronic infusion of a low subpressor dose of angiotensin II. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H771-H778.	3.2	49
42	Low Density Lipoprotein Receptor-Related Protein-1 in Cardiac Inflammation and Infarct Healing. Frontiers in Cardiovascular Medicine, 2019, 6, 51.	2.4	49
43	The Role of NLRP3 Inflammasome in Pericarditis. JACC Basic To Translational Science, 2021, 6, 137-150.	4.1	43
44	The Serine Protease HtrA1 Specifically Interacts and Degrades the Tuberous Sclerosis Complex 2 Protein. Molecular Cancer Research, 2010, 8, 1248-1260.	3.4	41
45	Comparative Cardiac Toxicity of Anthracyclines In Vitro and In Vivo in the Mouse. PLoS ONE, 2013, 8, e58421.	2.5	41
46	Inhibition of Apoptosis Signal–Regulating Kinase 1 Reduces Myocardial Ischemia–Reperfusion Injury in the Mouse. Journal of the American Heart Association, 2012, 1, e002360.	3.7	38
47	Heart transplantation from donation after circulatory death donors: Present and future. Journal of Cardiac Surgery, 2020, 35, 875-885.	0.7	38
48	A mouse model of radiation-induced cardiomyopathy. International Journal of Cardiology, 2012, 156, 231-233.	1.7	37
49	Recombinant Human Interleukin-1 Receptor Antagonist Provides Cardioprotection During Myocardial Ischemia Reperfusion in the Mouse. Cardiovascular Drugs and Therapy, 2012, 26, 273-276.	2.6	34
50	The Role of PDI as a Survival Factor in Cardiomyocyte Ischemia. Methods in Enzymology, 2011, 489, 47-65.	1.0	33
51	NLRP3 Inflammasome Inhibitors in Cardiovascular Diseases. Molecules, 2021, 26, 976.	3.8	33
52	Right Ventricular Dysfunction following Acute Myocardial Infarction in the Absence of Pulmonary Hypertension in the Mouse. PLoS ONE, 2011, 6, e18102.	2.5	33
53	Role of Interleukin-1 in Radiation-Induced Cardiomyopathy. Molecular Medicine, 2015, 21, 210-218.	4.4	31
54	Reduction of Myocardial Ischemia–Reperfusion Injury by Inhibiting Interleukin-1 Alpha. Journal of Cardiovascular Pharmacology, 2017, 69, 156-160.	1.9	31

#	Article	IF	CITATIONS
55	Apoptosis in Patients With Acute Myocarditis. American Journal of Cardiology, 2009, 104, 995-1000.	1.6	30
56	Anakinra in Experimental Acute Myocardial Infarction—Does Dosage or Duration of Treatment Matter?. Cardiovascular Drugs and Therapy, 2009, 23, 129-135.	2.6	30
57	Low-Density Lipoprotein Receptor–Related Protein-1 Is a Therapeutic Target in AcuteÂMyocardial Infarction. JACC Basic To Translational Science, 2017, 2, 561-574.	4.1	28
58	Altered Oxido-Reductive State in the Diabetic Heart: Loss of Cardioprotection due to Protein Disulfide Isomerase. Molecular Medicine, 2011, 17, 1012-1021.	4.4	27
59	Targeting the Innate Immune Response to Improve Cardiac Graft Recovery after Heart Transplantation: Implications for the Donation after Cardiac Death. International Journal of Molecular Sciences, 2016, 17, 958.	4.1	27
60	Developing LRP1 Agonists into a Therapeutic Strategy in Acute Myocardial Infarction. International Journal of Molecular Sciences, 2019, 20, 544.	4.1	25
61	Pharmacologic Inhibition of Phosphoinositide 3-Kinase Gamma (PI3Kγ) Promotes Infarct Resorption and Prevents Adverse Cardiac Remodeling After Myocardial Infarction in Mice. Journal of Cardiovascular Pharmacology, 2010, 56, 651-658.	1.9	23
62	Role of NLRP3 (cryopyrin) in acute myocardial infarction. Cardiovascular Research, 2013, 99, 225-226.	3.8	23
63	Relaxin' the Heart. Journal of Cardiovascular Pharmacology and Therapeutics, 2016, 21, 353-362.	2.0	22
64	An Orally Available NLRP3 Inflammasome Inhibitor Prevents Western Diet–Induced Cardiac Dysfunction in Mice. Journal of Cardiovascular Pharmacology, 2018, 72, 303-307.	1.9	22
65	Mitochondrial Membrane Permeability Inhibitors in Acute Myocardial Infarction. JACC Basic To Translational Science, 2016, 1, 524-535.	4.1	21
66	Inhibiting the Inflammatory Injury After Myocardial Ischemia Reperfusion With Plasma-Derived Alpha-1 Antitrypsin: A Post Hoc Analysis of the VCU-α1RT Study. Journal of Cardiovascular Pharmacology, 2018, 71, 375-379.	1.9	21
67	Recombinant Human Alpha-1 Antitrypsin-Fc Fusion Protein Reduces Mouse Myocardial Inflammatory Injury After Ischemia–Reperfusion Independent of Elastase Inhibition. Journal of Cardiovascular Pharmacology, 2016, 68, 27-32.	1.9	20
68	Inflammasome Formation in Granulomas in Cardiac Sarcoidosis. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007582.	4.8	20
69	Preservation of Contractile Reserve and Diastolic Function by Inhibiting the NLRP3 Inflammasome with OLT1177® (Dapansutrile) in a Mouse Model of Severe Ischemic Cardiomyopathy Due to Non-Reperfused Anterior Wall Myocardial Infarction. Molecules, 2021, 26, 3534.	3.8	19
70	A model of acute kidney injury in mice with cirrhosis and infection. Liver International, 2016, 36, 865-873.	3.9	18
71	Determinants of Cardiorespiratory Fitness Following Thoracic Radiotherapy in Lung or Breast Cancer Survivors. American Journal of Cardiology, 2020, 125, 988-996.	1.6	17
72	A Preclinical Translational Study of the Cardioprotective Effects of Plasma-Derived Alpha-1 Anti-trypsin in Acute Myocardial Infarction. Journal of Cardiovascular Pharmacology, 2017, 69, 273-278.	1.9	15

#	Article	IF	CITATIONS
73	Formation of the inflammasome during cardiac allograft rejection. International Journal of Cardiology, 2015, 201, 328-330.	1.7	14
74	Targeting the NLRP3 inflammasome to reduce warm ischemic injury in donation after circulatory death heart. Clinical Transplantation, 2020, 34, e14044.	1.6	14
75	The inflammasome in heart failure. Current Opinion in Physiology, 2021, 19, 105-112.	1.8	13
76	Leukocyte Activity in Patients with ST-Segment Elevation Acute Myocardial Infarction Treated with Anakinra. Molecular Medicine, 2014, 20, 486-489.	4.4	12
77	Interleukin-1 Blockade in Acute MyocardialÂInfarction and Heart Failure. JACC Basic To Translational Science, 2017, 2, 431-433.	4.1	12
78	Determination of Optimal Coronary Flow for the Preservation of "Donation after Circulatory Death― in Murine Heart Model. ASAIO Journal, 2018, 64, 225-231.	1.6	12
79	Ischemia and reperfusion injury to mitochondria and cardiac function in donation after circulatory death hearts- an experimental study. PLoS ONE, 2020, 15, e0243504.	2.5	12
80	Lack of soluble circulating cardiodepressant factors in takotsubo cardiomyopathy. Autonomic Neuroscience: Basic and Clinical, 2017, 208, 170-172.	2.8	11
81	Hydrogen Sulfide Therapy Suppresses Cofilin-2 and Attenuates Ischemic Heart Failure in a Mouse Model of Myocardial Infarction. Journal of Cardiovascular Pharmacology and Therapeutics, 2020, 25, 472-483.	2.0	11
82	The Commonalities and Differences in Mitochondrial Dysfunction Between ex vivo and in vivo Myocardial Global Ischemia Rat Heart Models: Implications for Donation After Circulatory Death Research. Frontiers in Physiology, 2020, 11, 681.	2.8	11
83	Modulation of Interleukin-1 and -18 Mediated Injury in Donation after Circulatory Death Mouse Hearts. Journal of Surgical Research, 2021, 257, 468-476.	1.6	10
84	Re. "NLRP3 inflammasome activation during myocardial ischemia reperfusion is cardioprotective― Biochemical and Biophysical Research Communications, 2016, 470, 811-812.	2.1	8
85	Right ventricular systolic dysfunction in patients with reperfused ST-segment elevation acute myocardial infarction. International Journal of Cardiology, 2012, 155, 314-316.	1.7	6
86	The Selective NLRP3-inflammasome inhibitor MCC950 Mitigates Post-resuscitation Myocardial Dysfunction and Improves Survival in a Rat Model of Cardiac Arrest and Resuscitation. Cardiovascular Drugs and Therapy, 2023, 37, 423-433.	2.6	6
87	Diet-Induced Obesity HFpEF Murine Models. JACC Basic To Translational Science, 2018, 3, 157.	4.1	5
88	The interleukin-1 receptor type I promotes the development of aging-associated cardiomyopathy in mice. Cytokine, 2022, 151, 155811.	3.2	4
89	The Role of Anthracyclines in Cardio-Oncology: Oxidative Stress, Inflammation, and Autophagy. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-3.	4.0	4
90	Modulation of Mitochondrial Respiration During Early Reperfusion Reduces Cardiac Injury in Donation After Circulatory Death Hearts. Journal of Cardiovascular Pharmacology, 2022, 80, 148-157.	1.9	4

#	Article	IF	CITATIONS
91	Refining murine heterotopic heart transplantation: A model to study ischemia and reperfusion injury in donation after circulatory death hearts. Animal Models and Experimental Medicine, 2021, 4, 283-296.	3.3	3
92	Improving circulatory death donor heart function: A novel approach. JTCVS Techniques, 2021, 9, 89-92.	0.4	3
93	Effects of NLRP3 inflammasome blockade on postresuscitation cerebral function in a rat model of cardiopulmonary resuscitation. Biomedicine and Pharmacotherapy, 2021, 143, 112093.	5.6	3
94	Response to Letter Regarding Article, "Targeting Interleukin-1 in Heart Disease― Circulation, 2014, 130, e63.	1.6	2
95	Inflammasome: a new villain in heart disease. Inflammasome, 2014, 1, .	0.6	2
96	Effects of dimethyl sulfoxide on the NLRP3 inflammasome. Immunobiology, 2015, 220, 1030.	1.9	2
97	Temperature and flow rate limit the optimal ex-vivo perfusion of the heart - an experimental study. Journal of Cardiothoracic Surgery, 2020, 15, 180.	1.1	2
98	Diastolic dysfunction in chronic hypoxia: IL-18 provides the elusive link. Acta Physiologica, 2015, 213, 298-300.	3.8	1
99	Assessment of machine perfusion conditions for the donation after circulatory death heart preservation. Artificial Organs, 2022, , .	1.9	1
10	Phosphodiesterase-5 inhibition and cardioprotection: potential role of hydrogen sulfide. BMC Pharmacology, 2009, 9, .	0.4	0
10	GALECTIN-1, A GALACTOSIDE BINDING LECTIN WITH IMMUNOMODULATORY EFFECTS, IS UPREGULATED IN TH MOUSE HEART DURING ACUTE MYOCARDIAL INFARCTION. Journal of the American College of Cardiology, 2010, 55, A123.E1147.	HE 2.8	Ο
10	CARDIOPROTECTIVE EFFECTS OF $\hat{i}\pm 1$ -ANTITRYPSIN IN EXPERIMENTAL ACUTE MYOCARDIAL INFARCTION DUE TRANSIENT ISCHEMIA IN THE MOUSE. Journal of the American College of Cardiology, 2010, 55, A110.E1031.	TO _{2.8}	0
10	PS1-10 Induction of the NLRP3 inflammasome in cardiac myocytes. Cytokine, 2010, 52, 19.	3.2	0
10	PS3-30 Modulation of caspase-1 activity in experimental acute myocardial infarction using exogenous α1-Antitrypsin. Cytokine, 2010, 52, 88.	3.2	0
10	PS2-049. Enhanced plasma Interleukin-1 activity contributes to cardiac dysfunction in heart failure. Cytokine, 2011, 56, 76.	3.2	0
10	SILDENAFIL PREVENTS RADIATION-INDUCED CARDIOMYOPATHY IN THE MOUSE. Journal of the American College of Cardiology, 2011, 57, E190.	2.8	0
10	Interleukin-1a Blockade Reduce Acute Myocardial Ischemic Injury In The Mouse. Journal of Molecular and Cellular Cardiology, 2017, 112, 150.	1.9	0
10	Letter by Potere et al Regarding Article, "Deletion of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Accelerates Atherosclerosis Regression and Increases C-C Chemokine Receptor Type 7 (CCR7) Expression in Plaque Macrophages― Circulation, 2019, 139, 1979-1980.	1.6	0

#	Article	IF	CITATIONS
109	The Bslc2–/– Mouse. JACC Basic To Translational Science, 2019, 4, 938-939.	4.1	0