
Hirakendu Basu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/315570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensors and Actuators B: Chemical, 2015, 213, 434-443.	4.0	394
2	Recent progress on surface chemistry of plasmonic metal nanoparticles for colorimetric assay of drugs in pharmaceutical and biological samples. TrAC - Trends in Analytical Chemistry, 2018, 105, 106-120.	5.8	152
3	One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells. Analytical Methods, 2015, 7, 2373-2378.	1.3	113
4	Ultra-small two dimensional MXene nanosheets for selective and sensitive fluorescence detection of Ag+ and Mn2+ ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 565, 70-77.	2.3	75
5	Influence of molecular assembly and NaCl concentration on gold nanoparticles for colorimetric detection of cysteine and glutathione. Sensors and Actuators B: Chemical, 2015, 212, 526-535.	4.0	65
6	Acid Oxidation of Muskmelon Fruit for the Fabrication of Carbon Dots with Specific Emission Colors for Recognition of Hg ²⁺ lons and Cell Imaging. ACS Omega, 2019, 4, 19332-19340.	1.6	64
7	Simple and sensitive colorimetric sensing of Cd2+ ion using chitosan dithiocarbamate functionalized gold nanoparticles as a probe. Sensors and Actuators B: Chemical, 2015, 220, 850-858.	4.0	63
8	Recent developments on fluorescent hybrid nanomaterials for metal ions sensing and bioimaging applications: A review. Journal of Molecular Liquids, 2021, 333, 115950.	2.3	60
9	Microwave-assisted synthesis of water-soluble Eu ³⁺ hybrid carbon dots with enhanced fluorescence for the sensing of Hg ²⁺ ions and imaging of fungal cells. New Journal of Chemistry, 2018, 42, 6125-6133.	1.4	51
10	An overview of molecular biology and nanotechnology based analytical methods for the detection of SARS-CoV-2: promising biotools for the rapid diagnosis of COVID-19. Analyst, The, 2021, 146, 1489-1513.	1.7	42
11	Development of p-nitroaniline dithiocarbamate capped gold nanoparticles-based microvolume UV–vis spectrometric method for facile and selective detection of quinalphos insecticide in environmental samples. Sensors and Actuators B: Chemical, 2016, 237, 826-835.	4.0	41
12	Graphene oxide encapsulated in alginate beads for enhanced sorption of uranium from different aquatic environments. Journal of Environmental Chemical Engineering, 2018, 6, 1625-1633.	3.3	41
13	One pot synthesis of fluorescent gold nanoclusters from Curcuma longa extract for independent detection of Cd2+, Zn2+ and Cu2+ ions with high sensitivity. Journal of Molecular Liquids, 2020, 304, 112697.	2.3	41
14	Mg ²⁺ ion as a tuner for colorimetric sensing of glyphosate with improved sensitivity via the aggregation of 2-mercapto-5-nitrobenzimidazole capped silver nanoparticles. RSC Advances, 2016, 6, 47741-47752.	1.7	40
15	Tuning of gold nanoclusters sensing applications with bovine serum albumin and bromelain for detection of Hg2+ ion and lambda-cyhalothrin via fluorescence turn-off and on mechanisms. Analytical and Bioanalytical Chemistry, 2018, 410, 2781-2791.	1.9	40
16	Influence of doping ion, capping agent and pH on the fluorescence properties of zinc sulfide quantum dots: Sensing of Cu2+ and Hg2+ ions and their biocompatibility with cancer and fungal cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 210, 212-221.	2.0	38
17	Ligand chemistry of gold, silver and copper nanoparticles for visual read-out assay of pesticides: A review. TrAC - Trends in Analytical Chemistry, 2022, 153, 116607.	5.8	36
18	Humic acid coated cellulose derived from rice husk: A novel biosorbent for the removal of Ni and Cr. Journal of Water Process Engineering, 2019, 32, 100892.	2.6	34

Hirakendu Basu

#	Article	IF	CITATIONS
19	Investigation of silicon doping into carbon dots for improved fluorescence properties for selective detection of Fe3+ ion. Optical Materials, 2019, 96, 109374.	1.7	34
20	Seasonal occurrence and risk assessment of pharmaceutical and personal care products in Bengaluru rivers and lakes, India. Journal of Environmental Chemical Engineering, 2021, 9, 105610.	3.3	34
21	Fluorescence enhancement of bovine serum albumin gold nanoclusters from La3+ ion: Detection of four divalent metal ions (Hg2+, Cu2+, Pb2+ and Cd2+). Journal of Molecular Liquids, 2021, 336, 116239.	2.3	33
22	Graphene oxide-MnO2-goethite microsphere impregnated alginate: A novel hybrid nanosorbent for As (III) and As (V) removal from groundwater. Journal of Water Process Engineering, 2021, 42, 102129.	2.6	32
23	Graphene-prussian blue nanocomposite impregnated in alginate for efficient removal of cesium from aquatic environment. Journal of Environmental Chemical Engineering, 2018, 6, 4399-4407.	3.3	31
24	Progress on boron nitride nanostructure materials: properties, synthesis and applications in hydrogen storage and analytical chemistry. Journal of Nanostructure in Chemistry, 2023, 13, 1-41.	5.3	31
25	Nano-hydroxyapatite coated activated carbon impregnated alginate: A new hybrid sorbent for uranium removal from potable water. Journal of Environmental Chemical Engineering, 2020, 8, 103999.	3.3	29
26	Chicken egg white and L-cysteine as cooperative ligands for effective encapsulation of Zn-doped silver nanoclusters for sensing and imaging applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 35-42.	2.3	27
27	Chemical characterization of sub-micron particles in indoor and outdoor air at two different microenvironments in the western part of India. SN Applied Sciences, 2019, 1, 1.	1.5	26
28	Simultaneous colorimetric detection of four drugs in their pharmaceutical formulations using unmodified gold nanoparticles as a probe. RSC Advances, 2015, 5, 19924-19932.	1.7	24
29	Highly efficient removal of TiO ₂ nanoparticles from aquatic bodies by silica microsphere impregnated Ca-alginate. New Journal of Chemistry, 2016, 40, 3177-3186.	1.4	24
30	TiO ₂ microsphere impregnated alginate: a novel hybrid sorbent for uranium removal from aquatic bodies. New Journal of Chemistry, 2020, 44, 3950-3960.	1.4	23
31	Novel hybrid material humic acid impregnated magnetic chitosan nano particles for decontamination of uranium from aquatic environment. Journal of Environmental Chemical Engineering, 2019, 7, 103110.	3.3	21
32	Simple hydrothermal approach for synthesis of fluorescent molybdenum disulfide quantum dots: Sensing of Cr3+ ion and cellular imaging. Materials Science and Engineering C, 2020, 111, 110778.	3.8	21
33	Present status of hybrid materials for potable water decontamination: a review. Environmental Science: Water Research and Technology, 2020, 6, 3214-3248.	1.2	19
34	Thiol functionalised silica microsphere loaded polymeric hydrogel: Development of a novel hybrid sorbent for removal of lead and cadmium. Chemosphere, 2022, 286, 131659.	4.2	19
35	Evaluation of selected pharmaceuticals and personal care products in water matrix using ion trap mass spectrometry: A simple weighted calibration curve approach. Journal of Pharmaceutical and Biomedical Analysis, 2020, 185, 113214.	1.4	17
36	Chitosan impregnated Ca-alginate: a new hybrid material for removal of uranium from potable water. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314, 1905-1914.	0.7	16

Hirakendu Basu

#	Article	IF	CITATIONS
37	Titania coated silica microsphere functionalized with potassium ferrocyanide impregnated in calcium alginate for efficient removal of Cs from aquatic environment. Journal of Environmental Chemical Engineering, 2017, 5, 5187-5195.	3.3	13
38	Recovery of gold using graphene oxide/calcium alginate hydrogel beads from a scrap solid state detector. Journal of Environmental Chemical Engineering, 2019, 7, 103134.	3.3	9
39	Perspectives of different colourâ€emissive nanomaterials in fluorescent ink, LEDs, cell imaging, and sensing of various analytes. Luminescence, 2023, 38, 867-895.	1.5	9
40	Alginate impregnated ferric hexacyanoferrate(II) for effective decontamination of cesium from aquatic environment. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 1827-1835.	0.7	5
41	Association and migration behavior of trace metals with humus colloidal particles in aquatic subsurface medium. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311, 503-511.	0.7	4
42	Nanoparticle-integrated electrochemical devices for identification of mycotoxins. , 2020, , 275-296.		3
43	Surface-modified metal nanoparticles for recognition of toxic organic molecules. , 2020, , 415-432.		2