List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3155471/publications.pdf

Version: 2024-02-01

176	29,377	81	161
papers	citations	h-index	g-index
189	189	189	23037
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Role of Type I Interferon Signaling and Microglia in the Abnormal Long-term Potentiation and Object Place Recognition Deficits of Male Mice With a Mutation of the Tuberous Sclerosis 2 Gene. Biological Psychiatry Global Open Science, 2023, 3, 451-459.	1.0	O
2	The emergence of molecular systems neuroscience. Molecular Brain, 2022, 15, 7.	1.3	7
3	Novel measures of Morris water maze performance that use vector field maps to assess accuracy, uncertainty, and intention of navigational searches. Hippocampus, 2022, 32, 264-285.	0.9	2
4	CCR5 closes the temporal window for memory linking. Nature, 2022, 606, 146-152.	13.7	40
5	Chemokine Receptors CC Chemokine Receptor 5 and C-X-C Motif Chemokine Receptor 4 Are New Therapeutic Targets for Brain Recovery after Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 2003-2017.	1.7	14
6	Pharmacological blockers of CCR5 and CXCR4 improve recovery after traumatic brain injury. Experimental Neurology, 2021, 338, 113604.	2.0	22
7	Postnatal immune activation causes social deficits in a mouse model of tuberous sclerosis: Role of microglia and clinical implications. Science Advances, 2021, 7, eabf2073.	4.7	12
8	Dorsal premammillary projection to periaqueductal gray controls escape vigor from innate and conditioned threats. ELife, $2021,10,$.	2.8	22
9	Dimensions and mechanisms of memory organization. Neuron, 2021, 109, 2649-2662.	3.8	18
10	Experiment Selection in Meta-Analytic Piecemeal Causal Discovery. IEEE Access, 2021, 9, 97929-97941.	2.6	0
11	Breakdown of spatial coding and interneuron synchronization in epileptic mice. Nature Neuroscience, 2020, 23, 229-238.	7.1	126
12	Human Memories Can Be Linked by Temporal Proximity. Frontiers in Human Neuroscience, 2019, 13, 315.	1.0	14
13	Excitatory neuron–specific SHP2-ERK signaling network regulates synaptic plasticity and memory. Science Signaling, 2019, 12, .	1.6	30
14	CCR5 Is a Therapeutic Target for Recovery after Stroke and Traumatic Brain Injury. Cell, 2019, 176, 1143-1157.e13.	13.5	249
15	All the light that we can see: a new era in miniaturized microscopy. Nature Methods, 2019, 16, 11-13.	9.0	125
16	Hotspots of dendritic spine turnover facilitate clustered spine addition and learning and memory. Nature Communications, 2018, 9, 422.	5.8	131
17	Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nature Neuroscience, 2018, 21, 309-314.	7.1	260
18	Randomised controlled trial of simvastatin treatment for autism in young children with neurofibromatosis type 1 (SANTA). Molecular Autism, $2018, 9, 12$.	2.6	52

#	Article	IF	Citations
19	Enhancement of Braind-Serine Mediates Recovery of Cognitive Function after Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 1667-1680.	1.7	18
20	ResearchMaps.org for integrating and planning research. PLoS ONE, 2018, 13, e0195271.	1.1	4
21	Risky Decision Making in Neurofibromatosis Type 1: An Exploratory Study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2017, 2, 170-179.	1.1	2
22	Memory's Intricate Web. Scientific American, 2017, 317, 30-37.	1.0	10
23	Noonan syndrome-associated SHP2 mutation differentially modulates the expression of postsynaptic receptors according to developmental maturation. Neuroscience Letters, 2017, 649, 41-47.	1.0	10
24	Spatial working memory in neurofibromatosis 1: Altered neural activity and functional connectivity. NeuroImage: Clinical, 2017, 15, 801-811.	1.4	22
25	Testing the excitation/inhibition imbalance hypothesis in a mouse model of the autism spectrum disorder: in vivo neurospectroscopy and molecular evidence for regional phenotypes. Molecular Autism, 2017, 8, 47.	2.6	55
26	Translating literature into causal graphs: Toward automated experiment selection. , 2017, , .		2
27	Computer-Aided Experiment Planning toward Causal Discovery in Neuroscience. Frontiers in Neuroinformatics, 2017, 11, 12.	1.3	6
28	Miniaturized two-photon microscope: seeing clearer and deeper into the brain. Light: Science and Applications, 2017, 6, e17104-e17104.	7.7	22
29	Allocating, Tagging, and Linking Memories. , 2017, , 621-636.		1
30	L'anatomie du souvenir. , 2017, N° 91, 26-34.		0
31	CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory. ELife, 2016, 5, .	2.8	122
32	Advances and Future Directions for Tuberous Sclerosis Complex Research: Recommendations From the 2015 Strategic Planning Conference. Pediatric Neurology, 2016, 60, 1-12.	1.0	43
33	A shared neural ensemble links distinct contextual memories encoded close in time. Nature, 2016, 534, 115-118.	13.7	756
34	Cover Image, Volume 26, Issue 10. Hippocampus, 2016, 26, C1-C1.	0.9	0
35	Randomized placebo-controlled study of lovastatin in children with neurofibromatosis type 1. Neurology, 2016, 87, 2575-2584.	1.5	76
36	Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites. Cell Reports, 2016, 17, 1491-1504.	2.9	80

#	Article	lF	Citations
37	A randomized placeboâ€controlled lovastatin trial for neurobehavioral function in neurofibromatosis I. Annals of Clinical and Translational Neurology, 2016, 3, 266-279.	1.7	44
38	Molecular and Cellular Mechanisms for Trapping and Activating Emotional Memories. PLoS ONE, 2016, 11, e0161655.	1.1	29
39	Resting state functional <scp>MRI</scp> reveals abnormal network connectivity in neurofibromatosis 1. Human Brain Mapping, 2015, 36, 4566-4581.	1.9	29
40	Genetic Approaches to Memory. , 2015, , 905-907.		0
41	Synaptic clustering within dendrites: An emerging theory of memory formation. Progress in Neurobiology, 2015, 126, 19-35.	2.8	149
42	The need for novel informatics tools for integrating and planning research in molecular and cellular cognition. Learning and Memory, 2015, 22, 494-498.	0.5	8
43	Animal Creativity., 2015,, 213-237.		1
44	CREB Regulates Memory Allocation in the Insular Cortex. Current Biology, 2014, 24, 2833-2837.	1.8	94
45	Encoding and storage of spatial information in the retrosplenial cortex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8661-8666.	3.3	189
46	Synaptic tagging during memory allocation. Nature Reviews Neuroscience, 2014, 15, 157-169.	4.9	203
47	Maternal Inflammation Contributes to Brain Overgrowth and Autism-Associated Behaviors through Altered Redox Signaling in Stem and Progenitor Cells. Stem Cell Reports, 2014, 3, 725-734.	2.3	89
48	Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nature Neuroscience, 2014, 17, 1736-1743.	7.1	120
49	Temporal and Region-Specific Requirements of αCaMKII in Spatial and Contextual Learning. Journal of Neuroscience, 2014, 34, 11180-11187.	1.7	39
50	The Need for Research Maps to Navigate Published Work and Inform Experiment Planning. Neuron, 2013, 79, 411-415.	3.8	9
51	Forebrain Engraftment by Human Glial Progenitor Cells Enhances Synaptic Plasticity and Learning in Adult Mice. Cell Stem Cell, 2013, 12, 342-353.	5.2	517
52	mTOR Inhibition Ameliorates Cognitive and Affective Deficits Caused by Disc1 Knockdown in Adult-Born Dentate Granule Neurons. Neuron, 2013, 77, 647-654.	3.8	94
53	CaMKII binding to GluN2B is critical during memory consolidation. EMBO Journal, 2012, 31, 1203-1216.	3.5	207
54	Neurofibromatosis Type 1: Modeling CNS Dysfunction. Journal of Neuroscience, 2012, 32, 14087-14093.	1.7	88

#	Article	IF	Citations
55	Associative Fear Learning Enhances Sparse Network Coding in Primary Sensory Cortex. Neuron, 2012, 75, 121-132.	3.8	92
56	α-Calcium Calmodulin Kinase II Modulates the Temporal Structure of Hippocampal Bursting Patterns. PLoS ONE, 2012, 7, e31649.	1.1	7
57	The Learning Disabilities Network (LeaDNet): Using neurofibromatosis type 1 (NF1) as a paradigm for translational research. American Journal of Medical Genetics, Part A, 2012, 158A, 2225-2232.	0.7	29
58	MAPK Signaling Determines Anxiety in the Juvenile Mouse Brain but Depression-Like Behavior in Adults. PLoS ONE, 2012, 7, e35035.	1.1	41
59	Alterations in White Matter Microstructure in Neurofibromatosis-1. PLoS ONE, 2012, 7, e47854.	1.1	61
60	Molecular and Cellular Approaches to Cognitive Impairments Associated with NF1 and Other Rasopathies. , 2012 , , 569 - 588 .		0
61	A career that transformed neuroscience. Brain Research Bulletin, 2011, 86, 285-286.	1.4	O
62	Rapamycin for treating Tuberous sclerosis and Autism spectrum disorders. Trends in Molecular Medicine, 2011, 17, 78-87.	3.5	194
63	NMDA Mediated Contextual Conditioning Changes miRNA Expression. PLoS ONE, 2011, 6, e24682.	1.1	53
64	Increased Levels of Anxiety-related Behaviors in a Tsc2 Dominant Negative Transgenic Mouse Model of Tuberous Sclerosis. Behavior Genetics, 2011, 41, 357-363.	1.4	45
65	Modeling hyperactivity: of mice and men. Nature Medicine, 2011, 17, 541-542.	15.2	10
66	The Hippocampus Plays a Selective Role in the Retrieval of Detailed Contextual Memories. Current Biology, 2010, 20, 1336-1344.	1.8	229
67	Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nature Neuroscience, 2010, 13, 423-430.	7.1	892
68	Muscleblind1, but Not Dmpk or Six5, Contributes to a Complex Phenotype of Muscular and Motivational Deficits in Mouse Models of Myotonic Dystrophy. PLoS ONE, 2010, 5, e9857.	1.1	27
69	CaMKII "Autonomy" Is Required for Initiating But Not for Maintaining Neuronal Long-Term Information Storage. Journal of Neuroscience, 2010, 30, 8214-8220.	1.7	141
70	Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13141-13146.	3.3	144
71	Constitutively active H-ras accelerates multiple forms of plasticity in developing visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19026-19031.	3.3	21
72	The Science of Research and the Search for Molecular Mechanisms of Cognitive Functions. , 2009, , .		5

#	Article	IF	CITATIONS
73	DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation. Human Molecular Genetics, 2009, 18, 2875-2888.	1.4	169
74	Adult reversal of cognitive phenotypes in neurodevelopmental disorders. Journal of Neurodevelopmental Disorders, 2009, 1, 150-157.	1.5	36
75	Genetics and neuropsychiatric disorders: Treatment during adulthood. Nature Medicine, 2009, 15, 849-850.	15.2	20
76	CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nature Neuroscience, 2009, 12, 1438-1443.	7.1	455
77	The molecular and cellular biology of enhanced cognition. Nature Reviews Neuroscience, 2009, 10, 126-140.	4.9	303
78	Molecular and Cellular Approaches to Memory Allocation in Neural Circuits. Science, 2009, 326, 391-395.	6.0	213
79	Dissociated Fear and Spatial Learning in Mice with Deficiency of Ataxin-2. PLoS ONE, 2009, 4, e6235.	1.1	50
80	Reversal of learning deficits in a Tsc2+/ \hat{a} mouse model of tuberous sclerosis. Nature Medicine, 2008, 14, 843-848.	15.2	771
81	Calmodulin-Kinases: Modulators of Neuronal Development and Plasticity. Neuron, 2008, 59, 914-931.	3.8	506
82	Reversing Neurodevelopmental Disorders in Adults. Neuron, 2008, 60, 950-960.	3.8	180
83	Molecular and cellular mechanisms of memory allocation in neuronetworks. Neurobiology of Learning and Memory, 2008, 89, 285-292.	1.0	75
83	Molecular and cellular mechanisms of memory allocation in neuronetworks. Neurobiology of Learning and Memory, 2008, 89, 285-292. Neurofibromin Regulation of ERK Signaling Modulates GABA Release and Learning. Cell, 2008, 135, 549-560.	1.0	75 384
	Learning and Memory, 2008, 89, 285-292. Neurofibromin Regulation of ERK Signaling Modulates GABA Release and Learning. Cell, 2008, 135,		
84	Learning and Memory, 2008, 89, 285-292. Neurofibromin Regulation of ERK Signaling Modulates GABA Release and Learning. Cell, 2008, 135, 549-560. A-Raf and B-Raf Are Dispensable for Normal Endochondral Bone Development, and Parathyroid Hormone-Related Peptide Suppresses Extracellular Signal-Regulated Kinase Activation in Hypertrophic	13.5	384
84 85	Learning and Memory, 2008, 89, 285-292. Neurofibromin Regulation of ERK Signaling Modulates GABA Release and Learning. Cell, 2008, 135, 549-560. A-Raf and B-Raf Are Dispensable for Normal Endochondral Bone Development, and Parathyroid Hormone-Related Peptide Suppresses Extracellular Signal-Regulated Kinase Activation in Hypertrophic Chondrocytes. Molecular and Cellular Biology, 2008, 28, 344-357. Autophosphorylation of ÂCaMKII is differentially involved in new learning and unlearning mechanisms	13.5	384
84 85 86	Neurofibromin Regulation of ERK Signaling Modulates GABA Release and Learning. Cell, 2008, 135, 549-560. A-Raf and B-Raf Are Dispensable for Normal Endochondral Bone Development, and Parathyroid Hormone-Related Peptide Suppresses Extracellular Signal-Regulated Kinase Activation in Hypertrophic Chondrocytes. Molecular and Cellular Biology, 2008, 28, 344-357. Autophosphorylation of ÂCaMKII is differentially involved in new learning and unlearning mechanisms of memory extinction. Learning and Memory, 2008, 15, 837-843. Molecular and Cellular Mechanisms of Learning Disabilities: A Focus on Neurofibromatosis Type I.,	13.5	384 49 35
84 85 86	Neurofibromin Regulation of ERK Signaling Modulates GABA Release and Learning. Cell, 2008, 135, 549-560. A-Raf and B-Raf Are Dispensable for Normal Endochondral Bone Development, and Parathyroid Hormone-Related Peptide Suppresses Extracellular Signal-Regulated Kinase Activation in Hypertrophic Chondrocytes. Molecular and Cellular Biology, 2008, 28, 344-357. Autophosphorylation of ÂCaMKII is differentially involved in new learning and unlearning mechanisms of memory extinction. Learning and Memory, 2008, 15, 837-843. Molecular and Cellular Mechanisms of Learning Disabilities: A Focus on Neurofibromatosis Type I., 2008, , 77-92. Essential role of B-Raf in oligodendrocyte maturation and myelination during postnatal central	13.5 1.1 0.5	384 49 35

#	Article	IF	CITATIONS
91	Interactions between the NR2B Receptor and CaMKII Modulate Synaptic Plasticity and Spatial Learning. Journal of Neuroscience, 2007, 27, 13843-13853.	1.7	169
92	Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18280-18285.	3.3	198
93	Neuronal Competition and Selection During Memory Formation. Science, 2007, 316, 457-460.	6.0	573
94	Memory for context becomes less specific with time. Learning and Memory, 2007, 14, 313-317.	0.5	249
95	Kinase activity is not required for αCaMKII-dependent presynaptic plasticity at CA3-CA1 synapses. Nature Neuroscience, 2007, 10, 1125-1127.	7.1	49
96	The science of research: The principles underlying the discovery of cognitive and other biological mechanisms. Journal of Physiology (Paris), 2007, 101, 203-213.	2.1	13
97	Towards a Molecular and Cellular Understanding of Remote Memory. Research and Perspectives in Neurosciences, 2007, , 59-67.	0.4	0
98	Stability of recent and remote contextual fear memory. Learning and Memory, 2006, 13, 451-457.	0.5	217
99	Investigation of Age-Related Cognitive Decline Using Mice as a Model System: Behavioral Correlates. American Journal of Geriatric Psychiatry, 2006, 14, 1004-1011.	0.6	36
100	Investigation of Age-Related Cognitive Decline Using Mice as a Model System: Neurophysiological Correlates. American Journal of Geriatric Psychiatry, 2006, 14, 1012-1021.	0.6	27
101	Differential effects of αCaMKII mutation on hippocampal learning and changes in intrinsic neuronal excitability. European Journal of Neuroscience, 2006, 23, 2235-2240.	1.2	34
102	Neurofibromatosis type 1: New insights into neurocognitive issues. Current Neurology and Neuroscience Reports, 2006, 6, 136-143.	2.0	73
103	Forebrain-specific knockout of B-raf kinase leads to deficits in hippocampal long-term potentiation, learning, and memory. Journal of Neuroscience Research, 2006, 83, 28-38.	1.3	67
104	Matrix Metalloproteinase-9 Is Required for Hippocampal Late-Phase Long-Term Potentiation and Memory. Journal of Neuroscience, 2006, 26, 1923-1934.	1.7	434
105	Essential role of B-Raf in ERK activation during extraembryonic development. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1325-1330.	3.3	96
106	CREB: A Cornerstone of Memory Consolidation?., 2005,, 359-380.		1
107	Trafficking in emotions. Nature Neuroscience, 2005, 8, 548-550.	7.1	1
108	The HMG-CoA Reductase Inhibitor Lovastatin Reverses the Learning and Attention Deficits in a Mouse Model of Neurofibromatosis Type 1. Current Biology, 2005, 15, 1961-1967.	1.8	361

#	Article	IF	Citations
109	Trace eyeblink conditioning requires the hippocampus but not autophosphorylation of ÂCaMKII in mice. Learning and Memory, 2005, 12, 211-215.	0.5	22
110	Modulation of Presynaptic Plasticity and Learning by the H-ras/Extracellular Signal-Regulated Kinase/Synapsin I Signaling Pathway. Journal of Neuroscience, 2005, 25, 9721-9734.	1.7	170
111	Notch to remember. Trends in Neurosciences, 2005, 28, 429-435.	4.2	78
112	Deletion of the Neuron-Specific Protein Delta-Catenin Leads to Severe Cognitive and Synaptic Dysfunction. Current Biology, 2004, 14, 1657-1663.	1.8	137
113	Increased Neuronal Excitability, Synaptic Plasticity, and Learning in Aged Kvβ1.1 Knockout Mice. Current Biology, 2004, 14, 1907-1915.	1.8	102
114	Consolidation of CS and US representations in associative fear conditioning. Hippocampus, 2004, 14, 557-569.	0.9	125
115	Memory Reconsolidation and Extinction Have Distinct Temporal and Biochemical Signatures. Journal of Neuroscience, 2004, 24, 4787-4795.	1.7	1,010
116	New Circuits for Old Memories. Neuron, 2004, 44, 101-108.	3.8	293
117	The Involvement of the Anterior Cingulate Cortex in Remote Contextual Fear Memory. Science, 2004, 304, 881-883.	6.0	805
118	Molecular and Cellular Cognition. Cell, 2004, 117, 3-4.	13.5	14
119	Learning and Memory Deficits in Notch Mutant Mice. Current Biology, 2003, 13, 1348-1354.	1.8	200
120	Molecular and cellular cognitive studies of the role of synaptic plasticity in memory. Journal of Neurobiology, 2003, 54, 224-237.	3.7	256
121	Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nature Neuroscience, 2003, 6, 51-58.	7.1	487
122	Mouse models of neurofibromatosis type I: bridging the GAP. Trends in Molecular Medicine, 2003, 9, 19-23.	3.5	57
123	MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 805-814.	1.8	274
124	The Antimetabolite ara-CTP Blocks Long-Term Memory of Conditioned Taste Aversion. Learning and Memory, 2003, 10, 503-509.	0.5	18
125	Pharmacologically Regulated Induction of Silent Mutations (PRISM): Combined Pharmacological and Genetic Approaches for Learning and Memory. Neuroscientist, 2003, 9, 104-109.	2.6	6
126	The RAS Effector RIN1 Modulates the Formation of Aversive Memories. Journal of Neuroscience, 2003, 23, 748-757.	1.7	68

#	Article	IF	CITATIONS
127	Derangements of Hippocampal Calcium/Calmodulin-Dependent Protein Kinase II in a Mouse Model for Angelman Mental Retardation Syndrome. Journal of Neuroscience, 2003, 23, 2634-2644.	1.7	240
128	Review Article: Molecular and Cellular Mechanisms Underlying the Cognitive Deficits Associated With Neurofibromatosis 1. Journal of Child Neurology, 2002, 17, 622-626.	0.7	64
129	Chapter XIII CREB, plasticity and memory. Handbook of Chemical Neuroanatomy, 2002, 19, 329-361.	0.3	1
130	Genetic Approaches to Molecular and Cellular Cognition: A Focus on LTP and Learning and Memory. Annual Review of Genetics, 2002, 36, 687-720.	3.2	95
131	Autophosphorylation of αCaMKII Is Required for Ocular Dominance Plasticity. Neuron, 2002, 36, 483-491.	3.8	112
132	Inhibitory Autophosphorylation of CaMKII Controls PSD Association, Plasticity, and Learning. Neuron, 2002, 36, 493-505.	3.8	273
133	A Pharmacogenetic Inducible Approach to the Study of NMDA/αCaMKII Signaling in Synaptic Plasticity. Current Biology, 2002, 12, 654-656.	1.8	34
134	Central nervous system myelination in mice with deficient expression of Notch1 receptor. Journal of Neuroscience Research, 2002, 67, 309-320.	1.3	121
135	Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature, 2002, 415, 526-530.	13.7	541
136	The molecules of forgetfulness. Nature, 2002, 418, 929-930.	13.7	21
137	CREB required for the stability of new and reactivated fear memories. Nature Neuroscience, 2002, 5,		
	348-355.	7.1	554
138		3.8	86
138	The CRE/CREB Pathway Is Transiently Expressed in Thalamic Circuit Development and Contributes to		
	The CRE/CREB Pathway Is Transiently Expressed in Thalamic Circuit Development and Contributes to Refinement of Retinogeniculate Axons. Neuron, 2001, 31, 409-420.	3.8	86
139	The CRE/CREB Pathway Is Transiently Expressed in Thalamic Circuit Development and Contributes to Refinement of Retinogeniculate Axons. Neuron, 2001, 31, 409-420. Weaving the Molecular and Cognitive Strands of Memory. Neuron, 2001, 32, 557-559. Alteration of cardiovascular and neuronal function in M1 knockout mice. Life Sciences, 2001, 68,	3.8	86
139 140	The CRE/CREB Pathway Is Transiently Expressed in Thalamic Circuit Development and Contributes to Refinement of Retinogeniculate Axons. Neuron, 2001, 31, 409-420. Weaving the Molecular and Cognitive Strands of Memory. Neuron, 2001, 32, 557-559. Alteration of cardiovascular and neuronal function in M1 knockout mice. Life Sciences, 2001, 68, 2489-2493. Hippocampus-dependent learning and memory is impaired in mice lacking the Ras-guanine-nucleotide	3.8 3.8 2.0	86
139 140 141	The CRE/CREB Pathway Is Transiently Expressed in Thalamic Circuit Development and Contributes to Refinement of Retinogeniculate Axons. Neuron, 2001, 31, 409-420. Weaving the Molecular and Cognitive Strands of Memory. Neuron, 2001, 32, 557-559. Alteration of cardiovascular and neuronal function in M1 knockout mice. Life Sciences, 2001, 68, 2489-2493. Hippocampus-dependent learning and memory is impaired in mice lacking the Ras-guanine-nucleotide releasing factor 1 (Ras-GRF1). Neuropharmacology, 2001, 41, 791-800. Learning deficits, but normal development and tumor predisposition, in mice lacking exon 23a of Nf1.	3.8 3.8 2.0	86 8 26

#	Article	IF	Citations
145	From genes to therapies: the role of animal models. Clinical Neuroscience Research, 2001, 1, 187-193.	0.8	O
146	Fear-potentiated startle, but not prepulse inhibition of startle, is impaired in CREBαÎ'â€"/â€" mutant mice Behavioral Neuroscience, 2000, 114, 998-1004.	0.6	25
147	Blockade of cyclic AMP-responsive element DNA binding in the brain of CREBΔ/α mutant mice. NeuroReport, 2000, 11, 2577-2579.	0.6	12
148	Long-term memory underlying hippocampus-dependent social recognition in mice., 2000, 10, 47-56.		420
149	Computer-Assisted Behavioral Assessment of Pavlovian Fear Conditioning in Mice. Learning and Memory, 2000, 7, 58-72.	0.5	150
150	Molecular and cellular mechanisms of cognitive function: implications for psychiatric disorders. Biological Psychiatry, 2000, 47, 200-209.	0.7	25
151	Functional and Molecular Aspects of Voltage-Gated K+ Channel beta Subunits. Annals of the New York Academy of Sciences, 1999, 868, 344-355.	1.8	187
152	Molecular mechanisms of synaptic plasticity and memory. Current Opinion in Neurobiology, 1999, 9, 209-213.	2.0	113
153	cAMP and memory: A seminal lesson from Drosophila and Aplysia. Brain Research Bulletin, 1999, 50, 441-442.	1.4	17
154	CREB AND MEMORY. Annual Review of Neuroscience, 1998, 21, 127-148.	5.0	1,345
155	The dorsal hippocampus is essential for context discrimination but not for contextual conditioning Behavioral Neuroscience, 1998, 112, 863-874.	0.6	429
156	Ibotenate lesions of the hippocampus impair spatial learning but not contextual fear conditioning in mice. Behavioural Brain Research, 1998, 98, 77-87.	1.2	117
157	Molecular, Cellular, and Neuroanatomical Substrates of Place Learning. Neurobiology of Learning and Memory, 1998, 70, 44-61.	1.0	83
158	Abnormal Hippocampal Spatial Representations in CaMKIIT286A and CREB Mice. Science, 1998, 279, 867-869.	6.0	173
159	Autophosphorylation at Thr286 of the Calcium-Calmodulin Kinase II in LTP and Learning. Science, 1998, 279, 870-873.	6.0	990
160	Gene Targeting. , 1998, , 89-142.		5
161	Reduced K ⁺ Channel Inactivation, Spike Broadening, and After-Hyperpolarization in Kv $\hat{I}^21.1$ -Deficient Mice with Impaired Learning. Learning and Memory, 1998, 5, 257-273.	0.5	135
162	Identification of Molecular and Cellular Mechanisms of Learning and Memory., 1998,, 67-82.		0

#	Article	IF	Citations
163	GENE TARGETING AND THE BIOLOGY OF LEARNING AND MEMORY. Annual Review of Genetics, 1997, 31, 527-546.	3.2	56
164	A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nature Genetics, 1997, 15, 281-284.	9.4	336
165	Spaced training induces normal long-term memory in CREB mutant mice. Current Biology, 1997, 7, 1-11.	1.8	322
166	Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology, 1997, 132, 107-124.	1.5	1,283
167	Deficient Plasticity in the Primary Visual Cortex of α-Calcium/Calmodulin-Dependent Protein Kinase II Mutant Mice. Neuron, 1996, 17, 491-499.	3.8	97
168	Impaired learning in mice with abnormal short-lived plasticity. Current Biology, 1996, 6, 1509-1518.	1.8	169
169	Importance of strain differences in evaluations of learning and memory processes in null mutants. Mental Retardation and Developmental Disabilities Research Reviews, 1996, 2, 243-248.	3.5	43
170	Ischemia-Induced Neuronal Damage: A Role for Calcium/Calmodulin-Dependent Protein Kinase II. Journal of Cerebral Blood Flow and Metabolism, 1996, 16, 1-6.	2.4	97
171	Chapter 1 The gene knockout technology for the analysis of learning and memory, and neural development. Progress in Brain Research, 1995, 105, 3-14.	0.9	21
172	The \hat{l}_{\pm} -Ca2+/calmodulin kinase II: A bidirectional modulator of presynaptic plasticity. Neuron, 1995, 14, 591-597.	3.8	125
173	Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 1994, 79, 59-68.	13.5	1,725
174	Targeting learning. Trends in Neurosciences, 1994, 17, 71-75.	4.2	85
175	Plastic genes are in!. Current Opinion in Neurobiology, 1994, 4, 413-420.	2.0	49
176	Modified hippocampal long-term potentiation in PKCγ-mutant mice. Cell, 1993, 75, 1253-1262.	13.5	643