Jennifer Rieusset

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3155366/publications.pdf

Version: 2024-02-01

38660 42291 8,940 98 50 92 citations g-index h-index papers 102 102 102 15052 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Physiopathologie du diab¨te de type 2Â: une histoire de communication entre le r©ticulum endoplasmique et la mitochondrie. Medecine Des Maladies Metaboliques, 2022, , .	0.1	O
2	Seipin localizes at endoplasmic-reticulum-mitochondria contact sites to control mitochondrial calcium import and metabolism in adipocytes. Cell Reports, 2022, 38, 110213.	2.9	29
3	Endoplasmic reticulum-mitochondria miscommunication is an early and causal trigger of hepatic insulin resistance and steatosis. Journal of Hepatology, 2022, 77, 710-722.	1.8	38
4	Effect of Metformin on T2D-Induced MAM Ca2+ Uncoupling and Contractile Dysfunction in an Early Mouse Model of Diabetic HFpEF. International Journal of Molecular Sciences, 2022, 23, 3569.	1.8	8
5	Calcium channel ITPR2 and mitochondria–ER contacts promote cellular senescence and aging. Nature Communications, 2021, 12, 720.	5.8	75
6	Role of mitochondria in liver metabolic health and diseases. Cell Calcium, 2021, 94, 102336.	1.1	55
7	Dietary obesity in mice is associated with lipid deposition and metabolic shifts in the lungs sharing features with the liver. Scientific Reports, 2021, 11, 8712.	1.6	10
8	The fastingâ€feeding metabolic transition regulates mitochondrial dynamics. FASEB Journal, 2021, 35, e21891.	0.2	16
9	Impaired aerobic capacity and premature fatigue preceding muscle weakness in the skeletal muscle Tfam-knockout mouse model. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	2
10	Loss and gain of function of Grp75 or mitofusin 2 distinctly alter cholesterol metabolism, but all promote triglyceride accumulation in hepatocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 159030.	1.2	11
11	Profiling of ob/ob mice skeletal muscle exosome-like vesicles demonstrates combined action of miRNAs, proteins and lipids to modulate lipid homeostasis in recipient cells. Scientific Reports, 2021, 11, 21626.	1.6	10
12	Use of Nanovesicles from Orange Juice to Reverse Diet-Induced Gut Modifications in Diet-Induced Obese Mice. Molecular Therapy - Methods and Clinical Development, 2020, 18, 880-892.	1.8	58
13	ANT2-Mediated ATP Import into Mitochondria Protects against Hypoxia Lethal Injury. Cells, 2020, 9, 2542.	1.8	10
14	Reduced reticulum–mitochondria Ca2+ transfer is an early and reversible trigger of mitochondrial dysfunctions in diabetic cardiomyopathy. Basic Research in Cardiology, 2020, 115, 74.	2.5	71
15	Preserved Ca2+ handling and excitation–contraction coupling in muscle fibres from diet-induced obese mice. Diabetologia, 2020, 63, 2471-2481.	2.9	6
16	Metformin Reverses the Enhanced Myocardial SR/ERâ€"Mitochondria Interaction and Impaired Complex I-Driven Respiration in Dystrophin-Deficient Mice. Frontiers in Cell and Developmental Biology, 2020, 8, 609493.	1.8	20
17	Defective Endoplasmic Reticulum–Mitochondria Connection Is a Hallmark of Wolfram Syndrome. Contact (Thousand Oaks (Ventura County, Calif)), 2019, 2, 251525641984740.	0.4	9
18	Endurance exercise decreases protein synthesis and ER-mitochondria contacts in mouse skeletal muscle. Journal of Applied Physiology, 2019, 127, 1297-1306.	1.2	19

#	Article	IF	CITATIONS
19	Differential Effect of Glucose on ER-Mitochondria Ca2+ Exchange Participates in Insulin Secretion and Glucotoxicity-Mediated Dysfunction of Î ² -Cells. Diabetes, 2019, 68, 1778-1794.	0.3	45
20	Longâ€Term Measures of Dyslipidemia, Inflammation, and Oxidative Stress in Rats Fed a Highâ€Fat/Highâ€Fructose Diet. Lipids, 2019, 54, 81-97.	0.7	33
21	Regulation of Mitochondria-Associated Membranes (MAMs) by NO/sGC/PKG Participates in the Control of Hepatic Insulin Response. Cells, 2019, 8, 1319.	1.8	22
22	Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Contributes to Muscle Insulin Resistance in Mice and Humans. Diabetes, 2018, 67, 636-650.	0.3	141
23	The role of endoplasmic reticulum-mitochondria contact sites in the control of glucose homeostasis: an update. Cell Death and Disease, 2018, 9, 388.	2.7	165
24	Mitochondria-associated membranes (MAMs): An emerging platform connecting energy and immune sensing to metabolic flexibility. Biochemical and Biophysical Research Communications, 2018, 500, 35-44.	1.0	28
25	Sulforaphane improves disrupted ER-mitochondria interactions and suppresses exaggerated hepatic glucose production. Molecular and Cellular Endocrinology, 2018, 461, 205-214.	1.6	36
26	ER-mitochondria cross-talk is regulated by the Ca $<$ sup $>$ 2+ $<$ /sup $>$ sensor NCS1 and is impaired in Wolfram syndrome. Science Signaling, 2018, 11, .	1.6	96
27	SK channel activation is neuroprotective in conditions of enhanced ER–mitochondrial coupling. Cell Death and Disease, 2018, 9, 593.	2.7	8
28	Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress. BMC Biology, 2018, 16, 65.	1.7	32
29	Endoplasmic reticulum-mitochondria calcium signaling in hepatic metabolic diseases. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 865-876.	1.9	36
30	Reduced Insulin Resistance Contributes to the Beneficial Effect of Protein Tyrosine Phosphatase-1B Deletion in a Mouse Model of Sepsis. Shock, 2017, 48, 355-363.	1.0	8
31	Metabolic signaling functions of ER–mitochondria contact sites: role in metabolic diseases. Journal of Molecular Endocrinology, 2017, 58, R87-R106.	1.1	85
32	Reactive oxygen species enhance mitochondrial function, insulin sensitivity and glucose uptake in skeletal muscle of senescence accelerated prone mice SAMP8. Free Radical Biology and Medicine, 2017, 113, 267-279.	1.3	8
33	Role of Endoplasmic Reticulum-Mitochondria Communication in Type 2 Diabetes. Advances in Experimental Medicine and Biology, 2017, 997, 171-186.	0.8	51
34	Glucose-regulated protein 75 determines ER–mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discovery, 2017, 3, 17076.	2.0	100
35	Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nature Medicine, 2017, 23, 990-996.	15.2	155
36	Mitochondria-Associated Membranes Response to Nutrient Availability and Role in Metabolic Diseases. Trends in Endocrinology and Metabolism, 2017, 28, 32-45.	3.1	117

#	Article	IF	CITATIONS
37	Reduction of endoplasmic reticulum- mitochondria interactions in beta cells from patients with type 2 diabetes. PLoS ONE, 2017, 12, e0182027.	1.1	68
38	Protection of Human Pancreatic Islets from Lipotoxicity by Modulation of the Translocon. PLoS ONE, 2016, 11, e0148686.	1.1	13
39	Exercise Does Not Protect against Peripheral and Central Effects of a High Cholesterol Diet Given Ad libitum in Old ApoEâ^'/â^' Mice. Frontiers in Physiology, 2016, 7, 453.	1.3	14
40	A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats. British Journal of Nutrition, 2016, 115, 1155-1166.	1.2	38
41	Magnetic resonance imaging biomarkers of exerciseâ€induced improvement of oxidative stress and inflammation in the brain of old highâ€fatâ€fed ApoE ^{â^'/â^'} mice. Journal of Physiology, 2016, 594, 6969-6985.	1.3	15
42	Study of Endoplasmic Reticulum and Mitochondria Interactions by In Situ Proximity Ligation Assay in Fixed Cells. Journal of Visualized Experiments, 2016, , .	0.2	39
43	Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance. Diabetologia, 2016, 59, 614-623.	2.9	114
44	Adipocytes, like their progenitors, contribute to inflammation of adipose tissues through promotion of Th-17 cells and activation of monocytes, in obese subjects. Adipocyte, 2016, 5, 275-282.	1.3	21
45	<i>Lactobacillus plantarum</i> strain maintains growth of infant mice during chronic undernutrition. Science, 2016, 351, 854-857.	6.0	470
46	Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. Journal of Molecular Cell Biology, 2016, 8, 129-143.	1.5	133
47	Exosome-like vesicles released from lipid-induced insulin-resistant muscles modulate gene expression and proliferation of beta recipient cells in mice. Diabetologia, 2016, 59, 1049-1058.	2.9	144
48	Estrogen related receptor alpha in castration-resistant prostate cancer cells promotes tumor progression in bone. Oncotarget, 2016, 7, 77071-77086.	0.8	29
49	Ozone Exposure Triggers Insulin Resistance Through Muscle c-Jun N-Terminal Kinase Activation. Diabetes, 2015, 64, 1011-1024.	0.3	69
50	Imeglimin Normalizes Glucose Tolerance and Insulin Sensitivity and Improves Mitochondrial Function in Liver of a High-Fat, High-Sucrose Diet Mice Model. Diabetes, 2015, 64, 2254-2264.	0.3	120
51	Adipose Tissue–Derived Stem Cells From Obese Subjects Contribute to Inflammation and Reduced Insulin Response in Adipocytes Through Differential Regulation of the Th1/Th17 Balance and Monocyte Activation. Diabetes, 2015, 64, 2477-2488.	0.3	89
52	Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: Distinct or interrelated roles?. Diabetes and Metabolism, 2015, 41, 358-368.	1.4	52
53	Visceral white fat remodelling contributes to intermittent hypoxia-induced atherogenesis. European Respiratory Journal, 2014, 43, 513-522.	3.1	77
54	Nicotinic Acid Effects on Insulin Sensitivity and Hepatic Lipid Metabolism: An In Vivo to In Vitro Study. Hormone and Metabolic Research, 2014, 46, 390-396.	0.7	20

#	Article	IF	Citations
55	FTO contributes to hepatic metabolism regulation through regulation of leptin action and STAT3 signalling in liver. Cell Communication and Signaling, 2014, 12, 4.	2.7	47
56	Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice. Diabetologia, 2014, 57, 2155-2164.	2.9	146
57	The mitochondrial-targeted antioxidant MitoQ ameliorates metabolic syndrome features in obesogenic diet-fed rats better than Apocynin or Allopurinol. Free Radical Research, 2014, 48, 1232-1246.	1.5	58
58	Regulation of Energy Metabolism and Mitochondrial Function in Skeletal Muscle During Lipid Overfeeding in Healthy Men. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1254-E1262.	1.8	29
59	Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Is Required for Insulin Signaling and Is Implicated in Hepatic Insulin Resistance. Diabetes, 2014, 63, 3279-3294.	0.3	316
60	Profiling of Circulating MicroRNAs Reveals Common MicroRNAs Linked to Type 2 Diabetes That Change With Insulin Sensitization. Diabetes Care, 2014, 37, 1375-1383.	4.3	312
61	Body weight gain impairs physical training benefits in old apoE -/- mice. Atherosclerosis, 2014, 235, e73.	0.4	0
62	Insulin Resistance is Associated with MCP1-Mediated Macrophage Accumulation in Skeletal Muscle in Mice and Humans. PLoS ONE, 2014, 9, e110653.	1.1	91
63	Grape Polyphenols Prevent Fructose-Induced Oxidative Stress and Insulin Resistance in First-Degree Relatives of Type 2 Diabetic Patients. Diabetes Care, 2013, 36, 1454-1461.	4.3	113
64	Depressing Mitochondria-Reticulum Interactions Protects Cardiomyocytes From Lethal Hypoxia-Reoxygenation Injury. Circulation, 2013, 128, 1555-1565.	1.6	206
65	High-fat diet action on adiposity, inflammation, and insulin sensitivity depends on the control low-fat diet. Nutrition Research, 2013, 33, 952-960.	1.3	40
66	Losartan, an angiotensin II type 1 receptor blocker, protects human islets from glucotoxicity through the phospholipase C pathway. FASEB Journal, 2013, 27, 5122-5130.	0.2	27
67	The expression of FTO in human adipose tissue is influenced by fat depot, adiposity, and insulin sensitivity. Obesity, 2013, 21, 1165-1173.	1.5	22
68	ER stress inhibits neuronal death by promoting autophagy. Autophagy, 2012, 8, 915-926.	4.3	194
69	Reduction of endoplasmic reticulum stress using chemical chaperones or Grp78 overexpression does not protect muscle cells from palmitate-induced insulin resistance. Biochemical and Biophysical Research Communications, 2012, 417, 439-445.	1.0	41
70	Regulation of hepatic mitochondrial metabolism in response to a high fat diet: a longitudinal study in rats. Journal of Physiology and Biochemistry, 2012, 68, 335-344.	1.3	27
71	Paclitaxel therapy potentiates cold hyperalgesia in streptozotocin-induced diabetic rats through enhanced mitochondrial reactive oxygen species production and TRPA1 sensitization. Pain, 2012, 153, 553-561.	2.0	84
72	Inhibition of xanthine oxidase reduces hyperglycemia-induced oxidative stress and improves mitochondrial alterations in skeletal muscle of diabetic mice. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E581-E591.	1.8	55

#	Article	IF	CITATIONS
73	Mitochondria and endoplasmic reticulum: Mitochondria–endoplasmic reticulum interplay in type 2 diabetes pathophysiology. International Journal of Biochemistry and Cell Biology, 2011, 43, 1257-1262.	1.2	51
74	Dynamic regulation of mitochondrial network and oxidative functions during 3T3-L1 fat cell differentiation. Journal of Physiology and Biochemistry, 2011, 67, 285-296.	1.3	54
75	FTO Is Increased in Muscle During Type 2 Diabetes, and Its Overexpression in Myotubes Alters Insulin Signaling, Enhances Lipogenesis and ROS Production, and Induces Mitochondrial Dysfunction. Diabetes, 2011, 60, 258-268.	0.3	92
76	The microRNA Signature in Response to Insulin Reveals Its Implication in the Transcriptional Action of Insulin in Human Skeletal Muscle and the Role of a Sterol Regulatory Element–Binding Protein-1c/Myocyte Enhancer Factor 2C Pathway. Diabetes, 2009, 58, 2555-2564.	0.3	133
77	Changes in adiponectin, its receptors and AMPK activity in tissues of diet-induced diabetic mice. Diabetes and Metabolism, 2008, 34, 52-61.	1.4	65
78	A short duration of high-fat diet induces insulin resistance and predisposes to adverse left ventricular remodeling after pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H2495-H2502.	1.5	73
79	Microarray analyses of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle. Physiological Genomics, 2008, 34, 327-337.	1.0	63
80	Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. Journal of Clinical Investigation, 2008, 118, 789-800.	3.9	657
81	Activation of liver X receptors promotes lipid accumulation but does not alter insulin action in human skeletal muscle cells. Diabetologia, 2006, 49, 990-999.	2.9	54
82	Peroxisome Proliferator-Activated Receptor-α-Null Mice Have Increased White Adipose Tissue Glucose Utilization, GLUT4, and Fat Mass: Role in Liver and Brain. Endocrinology, 2006, 147, 4067-4078.	1.4	73
83	Expression of Mfn2, the Charcot-Marie-Tooth Neuropathy Type 2A Gene, in Human Skeletal Muscle: Effects of Type 2 Diabetes, Obesity, Weight Loss, and the Regulatory Role of Tumor Necrosis Factor and Interleukin-6. Diabetes, 2005, 54, 2685-2693.	0.3	334
84	Regulation of SREBP-1 expression and transcriptional action on HKII and FAS genes during fasting and refeeding in rat tissues. Journal of Lipid Research, 2005, 46, 697-705.	2.0	96
85	Altered Growth in Male Peroxisome Proliferator-Activated Receptor \hat{I}^3 (PPAR \hat{I}^3) Heterozygous Mice: Involvement of PPAR \hat{I}^3 in a Negative Feedback Regulation of Growth Hormone Action. Molecular Endocrinology, 2004, 18, 2363-2377.	3.7	35
86	Suppressor of Cytokine Signaling 3 Expression and Insulin Resistance in Skeletal Muscle of Obese and Type 2 Diabetic Patients. Diabetes, 2004, 53, 2232-2241.	0.3	161
87	WY-14643 and 9-cis-retinoic acid induce IRS-2/PI 3-kinase signalling pathway and increase glucose transport in human skeletal muscle cells: differential effect in myotubes from healthy subjects and Type 2 diabetic patients. Diabetologia, 2004, 47, 1314-1323.	2.9	17
88	A New Selective Peroxisome Proliferator-Activated Receptor \hat{I}^3 Antagonist with Antiobesity and Antidiabetic Activity. Molecular Endocrinology, 2002, 16, 2628-2644.	3.7	201
89	Eicosapentaenoic Acid Induces mRNA Expression of Peroxisome Proliferatorâ€Activated Receptor γ. Obesity, 2002, 10, 518-525.	4.0	117
90	Impaired skin wound healing in peroxisome proliferator–activated receptor (PPAR)α and PPARβ mutant mice. Journal of Cell Biology, 2001, 154, 799-814.	2.3	388

#	Article	lF	CITATIONS
91	Regulation of p85î± phosphatidylinositol-3-kinase expression by peroxisome proliferator-activated receptors (PPARs) in human muscle cells. FEBS Letters, 2001, 502, 98-102.	1.3	18
92	The expression of the p85 \hat{l} ± subunit of phosphatidylinositol 3-Kinase is induced by activation of the peroxisome proliferator-activated receptor \hat{l} 3 in human adipocytes. Diabetologia, 2001, 44, 544-554.	2.9	44
93	The Regulation of Uncoupling Protein-2 Gene Expression by ω-6 Polyunsaturated Fatty Acids in Human Skeletal Muscle Cells Involves Multiple Pathways, Including the Nuclear Receptor Peroxisome Proliferator-activated Receptor β. Journal of Biological Chemistry, 2001, 276, 10853-10860.	1.6	69
94	15-Deoxy-î"12,14-prostaglandin J2 Induces Apoptosis of Human Hepatic Myofibroblasts. Journal of Biological Chemistry, 2001, 276, 38152-38158.	1.6	144
95	Insulin acutely regulates the expression of the peroxisome proliferator-activated receptor-gamma in human adipocytes. Diabetes, 1999, 48, 699-705.	0.3	121
96	Regulation of Gene Expression by Activation of the Peroxisome Proliferator-Activated Receptor \hat{l}^3 with Rosiglitazone (BRL 49653) in Human Adipocytes. Biochemical and Biophysical Research Communications, 1999, 265, 265-271.	1.0	131
97	Tissue Distribution and Quantification of the Expression of mRNAs of Peroxisome Proliferator–Activated Receptors and Liver X Receptor-α in Humans: No Alteration in Adipose Tissue of Obese and NIDDM Patients. Diabetes, 1997, 46, 1319-1327.	0.3	626
98	Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes, 1997, 46, 1319-1327.	0.3	171