Matthias Engel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/31553/publications.pdf

Version: 2024-02-01

52 papers 1,206 citations

393982 19 h-index 395343 33 g-index

54 all docs

54 docs citations

54 times ranked 1467 citing authors

#	Article	IF	CITATIONS
1	Discovery of novel 6-hydroxybenzothiazole urea derivatives as dual Dyrk1A/l±-synuclein aggregation inhibitors with neuroprotective effects. European Journal of Medicinal Chemistry, 2022, 227, 113911.	2.6	11
2	Novel 2,4-disubstituted quinazoline analogs as antibacterial agents with improved cytotoxicity profile: Modification of the benzenoid part. Bioorganic and Medicinal Chemistry Letters, 2022, 59, 128531.	1.0	2
3	Development of novel conformationally restricted selective $Clk1/4$ inhibitors through creating an intramolecular hydrogen bond involving an imide linker. European Journal of Medicinal Chemistry, 2022, 238, 114411.	2.6	4
4	Development of (4-Phenylamino)quinazoline Alkylthiourea Derivatives as Novel NF-κB Inhibitors. Pharmaceuticals, 2022, 15, 778.	1.7	2
5	From EGFR kinase inhibitors to anti-inflammatory drugs: Optimization and biological evaluation of (4-(phenylamino)quinazolinyl)-phenylthiourea derivatives as novel NF-κB inhibitors. Bioorganic Chemistry, 2022, 127, 105977.	2.0	2
6	5-Methoxybenzothiophene-2-Carboxamides as Inhibitors of Clk1/4: Optimization of Selectivity and Cellular Potency. Molecules, 2021, 26, 1001.	1.7	4
7	From Celecoxib to a Novel Class of Phosphodiesterase 5 Inhibitors: Trisubstituted Pyrazolines as Novel Phosphodiesterase 5 Inhibitors with Extremely High Potency and Phosphodiesterase Isozyme Selectivity. Journal of Medicinal Chemistry, 2021, 64, 4462-4477.	2.9	11
8	Novel 2,4-disubstituted quinazoline analogs as antibacterial agents with improved cytotoxicity profile: Optimization of the 2,4-substituents. Bioorganic Chemistry, 2021, 117, 105422.	2.0	6
9	Discovery of Hydroxybenzothiazole Urea Compounds as Multitargeted Agents Suppressing Major Cytotoxic Mechanisms in Neurodegenerative Diseases. ACS Chemical Neuroscience, 2021, 12, 4302-4318.	1.7	4
10	Discovery of trisubstituted pyrazolines as a novel scaffold for the development of selective phosphodiesterase 5 inhibitors. Bioorganic Chemistry, 2020, 104, 104322.	2.0	6
11	Extending the use of tadalafil scaffold: Development of novel selective phosphodiesterase 5 inhibitors and histone deacetylase inhibitors. Bioorganic Chemistry, 2020, 98, 103742.	2.0	14
12	Synthesis of novel 1,2-diarylpyrazolidin-3-one–based compounds and their evaluation as broad spectrum antibacterial agents. Bioorganic Chemistry, 2020, 99, 103759.	2.0	7
13	Discovery of holoenzyme-disrupting chemicals as substrate-selective CK2 inhibitors. Scientific Reports, 2019, 9, 15893.	1.6	18
14	2-Aminothiazole Derivatives as Selective Allosteric Modulators of the Protein Kinase CK2. 2. Structure-Based Optimization and Investigation of Effects Specific to the Allosteric Mode of Action. Journal of Medicinal Chemistry, 2019, 62, 1817-1836.	2.9	17
15	2-Aminothiazole Derivatives as Selective Allosteric Modulators of the Protein Kinase CK2. 1. Identification of an Allosteric Binding Site. Journal of Medicinal Chemistry, 2019, 62, 1803-1816.	2.9	25
16	Development of novel amide–derivatized 2,4-bispyridyl thiophenes as highly potent and selective Dyrk1A inhibitors. Part II: Identification of the cyclopropylamide moiety as a key modification. European Journal of Medicinal Chemistry, 2018, 158, 270-285.	2.6	16
17	Design and synthesis of conformationally constraint Dyrk1A inhibitors by creating an intramolecular H-bond involving a benzothiazole core. MedChemComm, 2018, 9, 1045-1053.	3.5	10
18	Development of novel 2,4-bispyridyl thiopheneâ€"based compounds as highly potent and selective Dyrk1A inhibitors. Part I: Benzamide and benzylamide derivatives. European Journal of Medicinal Chemistry, 2018, 157, 1031-1050.	2.6	18

#	Article	IF	Citations
19	Design and synthesis of novel 1,3,5-triphenyl pyrazolines as potential anti-inflammatory agents through allosteric inhibition of protein kinase Czeta (PKCζ). MedChemComm, 2018, 9, 1076-1082.	3.5	2
20	Development of Selective Clk1 and -4 Inhibitors for Cellular Depletion of Cancer-Relevant Proteins. Journal of Medicinal Chemistry, 2017, 60, 5377-5391.	2.9	41
21	First Bispecific Inhibitors of the Epidermal Growth Factor Receptor Kinase and the NF-κB Activity As Novel Anticancer Agents. Journal of Medicinal Chemistry, 2017, 60, 2853-2868.	2.9	28
22	Pharmacological inhibition of protein kinase C (PKC)ζ downregulates the expression of cytokines involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). European Journal of Pharmaceutical Sciences, 2016, 93, 405-409.	1.9	14
23	Synthesis and Optimization of New 3,6-Disubstitutedindole Derivatives and Their Evaluation as Anticancer Agents Targeting the MDM2/MDM <i>x</i> Complex. Chemical and Pharmaceutical Bulletin, 2016, 64, 34-41.	0.6	3
24	Synthesis and CYP17α hydroxylase inhibition activity of new 3α- and 3β-ester derivatives of pregnenolone and related ether analogues. Medicinal Chemistry Research, 2016, 25, 310-321.	1.1	4
25	Design and synthesis of novel tamoxifen analogues that avoid CYP2D6 metabolism. European Journal of Medicinal Chemistry, 2016, 112, 171-179.	2.6	23
26	Systematic diversification of benzylidene heterocycles yields novel inhibitor scaffolds selective for Dyrk1A, Clk1 and CK2. European Journal of Medicinal Chemistry, 2016, 112, 209-216.	2.6	14
27	Design and synthesis of novel flexible ester-containing analogs of tamoxifen and their evaluation as anticancer agents. Future Medicinal Chemistry, 2016, 8, 249-256.	1.1	10
28	Exploiting the Chromone Scaffold for the Development of Inhibitors of Corticosteroid Biosynthesis. Journal of Medicinal Chemistry, 2016, 59, 2468-2477.	2.9	21
29	A new pregnenolone analogues as privileged scaffolds in inhibition of CYP17 hydroxylase enzyme. Synthesis and in silico molecular docking study. Steroids, 2015, 100, 52-59.	0.8	5
30	New biaryl-chalcone derivatives of pregnenolone via Suzuki–Miyaura cross-coupling reaction. Synthesis, CYP17 hydroxylase inhibition activity, QSAR, and molecular docking study. Steroids, 2015, 101, 43-50.	0.8	19
31	6â€Hydroxybenzothiophene Ketones: Potent Inhibitors of 17βâ€Hydroxysteroid Dehydrogenase Typeâ€1 (17βâ€HSD1) Owing to Favorable Molecule Geometry and Conformational Preorganization. ChemMedChem, 2014, 9, 2294-2308.	1.6	14
32	Molecular Mechanism of Regulation of the Atypical Protein Kinase C by N-terminal Domains and an Allosteric Small Compound. Chemistry and Biology, 2014, 21, 754-765.	6.2	24
33	First Selective Dual Inhibitors of Tau Phosphorylation and Beta-Amyloid Aggregation, Two Major Pathogenic Mechanisms in Alzheimer's Disease. ACS Chemical Neuroscience, 2014, 5, 1198-1202.	1.7	27
34	Discovery and Optimization of 1,3,5-Trisubstituted Pyrazolines as Potent and Highly Selective Allosteric Inhibitors of Protein Kinase C-ζ. Journal of Medicinal Chemistry, 2014, 57, 6513-6530.	2.9	33
35	Hydroxybenzothiophene Ketones Are Efficient Pre-mRNA Splicing Modulators Due to Dual Inhibition of Dyrk1A and Clk1/4. ACS Medicinal Chemistry Letters, 2014, 5, 963-967.	1.3	40
36	Screening Dyrk1A inhibitors by MALDI-QqQ mass spectrometry: systematic comparison to established radiometric, luminescence, and LC–UV–MS assays. Analytical and Bioanalytical Chemistry, 2014, 406, 2841-2852.	1.9	3

#	Article	IF	CITATIONS
37	New CYP17 Hydroxylase Inhibitors: Synthesis, Biological Evaluation, QSAR, and Molecular Docking Study of New Pregnenolone Analogs. Archiv Der Pharmazie, 2014, 347, 896-907.	2.1	13
38	Design and Synthesis of a Library of Lead-Like 2,4-Bisheterocyclic Substituted Thiophenes as Selective Dyrk/Clk Inhibitors. PLoS ONE, 2014, 9, e87851.	1.1	43
39	Highly Potent and Selective Nonsteroidal Dual Inhibitors of CYP17/CYP11B2 for the Treatment of Prostate Cancer To Reduce Risks of Cardiovascular Diseases. Journal of Medicinal Chemistry, 2013, 56, 6101-6107.	2.9	40
40	6â€Aryl and Heterocycle Quinazoline Derivatives as Potent EGFR Inhibitors with Improved Activity toward Gefitinibâ€Sensitive and â€Resistant Tumor Cell Lines. ChemMedChem, 2013, 8, 1495-1504.	1.6	16
41	Quinazoline and tetrahydropyridothieno[2,3-d]pyrimidine derivatives as irreversible EGFR tyrosine kinase inhibitors: influence of the position 4 substituent. MedChemComm, 2013, 4, 1202.	3.5	16
42	Trisubstituted and tetrasubstituted pyrazolines as a novel class of cell-growth inhibitors in tumor cells with wild type p53. Bioorganic and Medicinal Chemistry, 2013, 21, 7343-7356.	1.4	4
43	Design of Novel βâ€Carboline Derivatives with Pendant 5â€Bromothienyl and Their Evaluation as Phosphodiesteraseâ€5 Inhibitors. Archiv Der Pharmazie, 2013, 346, 23-33.	2.1	14
44	PIF-Pocket as a Target for C. albicans Pkh Selective Inhibitors. ACS Chemical Biology, 2013, 8, 2283-2292.	1.6	13
45	Substrate-Selective Inhibition of Protein Kinase PDK1 by Small Compounds that Bind to the PIF-Pocket Allosteric Docking Site. Chemistry and Biology, 2012, 19, 1152-1163.	6.2	70
46	2-(3-Oxo-1,3-diphenylpropyl)malonic Acids as Potent Allosteric Ligands of the PIF Pocket of Phosphoinositide-Dependent Kinase-1: Development and Prodrug Concept. Journal of Medicinal Chemistry, 2012, 55, 9817-9830.	2.9	38
47	4-Benzimidazolyl-3-Phenylbutanoic Acids As Novel Pif-Pocket-Targeting Allosteric Inhibitors of Protein Kinase PKCζ. Journal of Medicinal Chemistry, 2011, 54, 6714-6723.	2.9	35
48	Allosteric Regulation of Protein Kinase PKCζ by the N-Terminal C1 Domain and Small Compounds to the PIF-Pocket. Chemistry and Biology, 2011, 18, 1463-1473.	6.2	61
49	Regulation of the Interaction between Protein Kinase C-related Protein Kinase 2 (PRK2) and Its Upstream Kinase, 3-Phosphoinositide-dependent Protein Kinase 1 (PDK1). Journal of Biological Chemistry, 2009, 284, 30318-30327.	1.6	28
50	Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1. Nature Chemical Biology, 2009, 5, 758-764.	3.9	134
51	3,5-Diphenylpent-2-enoic Acids as Allosteric Activators of the Protein Kinase PDK1: Structureâ°Activity Relationships and Thermodynamic Characterization of Binding as Paradigms for PIF-Binding Pocket-Targeting Compoundsâ€PDB code of ⟨b⟩2Z⟨/b⟩ with PDK1: 3HRF Journal of Medicinal Chemistry, 2009. 52. 4683-4693.	2.9	72
52	Allosteric activation of the protein kinase PDK1 with low molecular weight compounds. EMBO Journal, 2006, 25, 5469-5480.	3.5	104