Angel MuÑoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3155172/publications.pdf

Version: 2024-02-01

100	4.460	136740	1	10170
128	4,463	32		64
papers	citations	h-index		g-index
139	139	139		4426
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Recent progress in research on tungsten materials for nuclear fusion applications in Europe. Journal of Nuclear Materials, 2013, 432, 482-500.	1.3	610
2	Magnetic structure of hexagonalRMnO3(R=Y,â€,Sc):Thermal evolution from neutron powder diffraction data. Physical Review B, 2000, 62, 9498-9510.	1.1	287
3	Complex Magnetism and Magnetic Structures of the Metastable HoMnO3Perovskite. Inorganic Chemistry, 2001, 40, 1020-1028.	1.9	215
4	Crystallographic and magnetic structure of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mm< td=""><td>nrow><mi< td=""><td>nl:162>2.5</td></mi<></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	nrow> <mi< td=""><td>nl:162>2.5</td></mi<>	nl: 162 >2.5
5	Review on the EFDA programme on tungsten materials technology and science. Journal of Nuclear Materials, 2011, 417, 463-467.	1.3	157
6	Evolution of the Magnetic Structure of Hexagonal HoMnO3from Neutron Powder Diffraction Data. Chemistry of Materials, 2001, 13, 1497-1505.	3.2	144
7	The magnetic structure of YMnO3perovskite revisited. Journal of Physics Condensed Matter, 2002, 14, 3285-3294.	0.7	143
8	Magnetic structure and properties ofBiMn2O5oxide: A neutron diffraction study. Physical Review B, 2002, 65, .	1.1	120
9	Mechanical properties and corrosion behavior of Mg–HAP composites. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39, 238-246.	1.5	112
10	Preparation, Crystal Structure, and Magnetic and Magnetotransport Properties of the Double Perovskite Ca2FeMoO6. Chemistry of Materials, 2000, 12, 161-168.	3.2	108
11	Magnetic structure evolution of NdMnO3derived from neutron diffraction data. Journal of Physics Condensed Matter, 2000, 12, 1361-1376.	0.7	101
12	The IFMIF-DONES project: preliminary engineering design. Nuclear Fusion, 2018, 58, 105002.	1.6	78
13	Role of halogens in the mechanism of sensitization of uncooled PbSe infrared photodetectors. Journal of Applied Physics, 2003, 93, 1778-1784.	1.1	71
14	A brief summary of the progress on the EFDA tungsten materials program. Journal of Nuclear Materials, 2013, 442, S173-S180.	1.3	69
15	Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering. Journal of Nuclear Materials, 2013, 436, 68-75.	1.3	69
16	Magnetic Structure of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LaCrO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> Pero under High Pressure from <i>In Situ</i> Neutron Diffraction. Physical Review Letters, 2011, 106, 057201.	vs lzi.19 e	67
17	Review on the EFDA work programme on nano-structured ODS RAF steels. Journal of Nuclear Materials, 2011, 417, 149-153.	1.3	66
18	Mechanical and microstructural behaviour of Y2O3 ODS EUROFER 97. Journal of Nuclear Materials, 2007, 367-370, 196-201.	1.3	61

#	Article	IF	Citations
19	Mechanical dispersion of Y2O3 nanoparticles in steel EUROFER 97: process and optimisation. Journal of Nuclear Materials, 2003, 322, 228-234.	1.3	60
20	Magnetic structures of LaMnO3 + \hat{l} perovskites (\hat{l} = 0.11, 0.15, 0.26). Solid State Communications, 1997, 102, 7-12.	0.9	59
21	High-Pressure Preparation, Crystal Structure, Magnetic Properties, and Phase Transitions in GdNiO3and DyNiO3Perovskites. Chemistry of Materials, 1999, 11, 2463-2469.	3.2	57
22	PbSe photodetector arrays for IR sensors. Thin Solid Films, 1998, 317, 425-428.	0.8	54
23	Preparation, crystal and magnetic structures of two new double perovskites: Ca2CoTeO6and Sr2CoTeO6. Journal of Materials Chemistry, 2005, 15, 993-1001.	6.7	54
24	Magnetic Interactions in the Double Perovskites R $<$ sub $>$ 2 $<$ /sub $>$ NiMnO $<$ sub $>$ 6 $<$ /sub $>$ (R = Tb, Ho, Er, Tm) Investigated by Neutron Diffraction. Inorganic Chemistry, 2015, 54, 10890-10900.	1.9	49
25	La2O3-reinforced W and W–V alloys produced by hot isostatic pressing. Journal of Nuclear Materials, 2011, 417, 508-511.	1.3	48
26	Microstructure and tensile properties of Y2O3-dispersed titanium produced by arc melting. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 422, 189-197.	2.6	46
27	Microstructural characterization of Y2O3 ODS–Fe–Cr model alloys. Journal of Nuclear Materials, 2009, 386-388, 449-452.	1.3	43
28	Fabrication and characterization of Y 2 O 3 dispersion strengthened copper alloys. Journal of Nuclear Materials, 2014, 455, 655-659.	1.3	41
29	Synthesis, Structural, and Magnetic Characterization of a New Ferrimagnetic Oxide:Â YFeMnO5. Chemistry of Materials, 2004, 16, 4087-4094.	3.2	37
30	Microstructure and tensile properties of oxide dispersion strengthened Fe–14Cr–0.3Y2O3 and Fe–14Cr–2W–0.3Ti–0.3Y2O3. Journal of Nuclear Materials, 2013, 442, S142-S147.	1.3	37
31	Crystallographic and magnetic transitions inCeVO3:A neutron diffraction study. Physical Review B, 2003, 68, .	1.1	35
32	Development of oxide dispersion strengthened W alloys produced by hot isostatic pressing. Fusion Engineering and Design, 2011, 86, 2534-2537.	1.0	35
33	Crystal and magnetic structure of the complex oxides Sr2MnMoO6, Sr2MnWO6and Ca2MnWO6: a neutron diffraction study. Journal of Physics Condensed Matter, 2002, 14, 8817-8830.	0.7	34
34	Microstructure and mechanical properties of ultrafine-grained Fe–14Cr and ODS Fe–14Cr model alloys. Journal of Nuclear Materials, 2011, 417, 213-216.	1.3	33
35	A Study of the Magnetic Structure of LaMn2O5from Neutron Powder Diffraction Data. European Journal of Inorganic Chemistry, 2005, 2005, 685-691.	1.0	32
36	Consolidation of W–Ta composites: Hot isostatic pressing and spark and pulse plasma sintering. Fusion Engineering and Design, 2015, 98-99, 1950-1955.	1.0	31

#	Article	IF	Citations
37	On the magnetic structure of DyNiO3. Journal of Solid State Chemistry, 2009, 182, 1982-1989.	1.4	30
38	Mechanical characteristics of porous hydroxyapatite/oxide composites produced by post-sintering hot isostatic pressing. Ceramics International, 2009, 35, 2373-2380.	2.3	30
39	Processing and mechanical characteristics of magnesium-hydroxyapatite metal matrix biocomposites. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69, 135-143.	1.5	30
40	The magnetic structures of Ce3Al11: a single crystal study. Journal of Magnetism and Magnetic Materials, 1995, 148, 397-408.	1.0	29
41	Positron annihilation characteristics of ODS and non-ODS EUROFER isochronally annealed. Journal of Nuclear Materials, 2008, 376, 222-228.	1.3	29
42	Structural and magnetic transition in YbVO3: a neutron diffraction study. Journal of Materials Chemistry, 2003, 13, 1234-1240.	6.7	27
43	Synthesis and study of the crystallographic and magnetic structure of the ferrimagnetic oxideErFeMnO5. Physical Review B, 2005, 72, .	1.1	27
44	An Original Polymorph Sequence in the High-Temperature Evolution of the Perovskite Pb ₂ TmSbO ₆ . Journal of the American Chemical Society, 2010, 132, 14470-14480.	6.6	27
45	Mechanical behavior of tungsten–vanadium–lanthana alloys as function of temperature. Journal of Nuclear Materials, 2013, 442, S277-S281.	1.3	27
46	LaMn ₃ Ni ₂ Mn ₂ O ₁₂ : An A- and B-Site Ordered Quadruple Perovskite with A-Site Tuning Orthogonal Spin Ordering. Chemistry of Materials, 2016, 28, 8988-8996.	3.2	27
47	Microstructural and mechanical characteristics of W–2Ti and W–1TiC processed by hot isostatic pressing. Journal of Nuclear Materials, 2014, 455, 306-310.	1.3	26
48	SANS evidence for the dispersion of nanoparticles in W–1Y2O3 and W–1La2O3 processed by hot isostatic pressing. International Journal of Refractory Metals and Hard Materials, 2012, 33, 6-9.	1.7	24
49	Thermal Evolution of the Crystallographic and Magnetic Structure in LuVO3:Â A Neutron Diffraction Study. Chemistry of Materials, 2004, 16, 1544-1550.	3.2	23
50	Mechanical characterisation of tungsten–1 wt.% yttrium oxide as a function of temperature and atmosphere. Journal of Nuclear Materials, 2014, 454, 455-461.	1.3	23
51	The effects of tantalum addition on the microtexture and mechanical behaviour of tungsten for ITER applications. Journal of Nuclear Materials, 2015, 467, 949-955.	1.3	23
52	Towards the EU fusion-oriented neutron source: The preliminary engineering design of IFMIF-DONES. Fusion Engineering and Design, 2019, 146, 261-268.	1.0	23
53	High pressure synthesis, crystal, magnetic structure and magnetotransport of SrFe0.5Co0.5O3â^δ. Journal of Solid State Chemistry, 2006, 179, 3365-3370.	1.4	22
54	Void formation in ODS EUROFER produced by hot isostatic pressing. Journal of Nuclear Materials, 2009, 386-388, 462-465.	1.3	22

#	Article	IF	CITATIONS
55	Structural and magnetic characterization of the double perovskites R2NiRuO6 (RÂ=ÂPr-Er): A neutron diffraction study. Acta Materialia, 2017, 126, 114-123.	3.8	22
56	Peculiar Magnetic Behavior of the TbCu3Mn4O12 Complex Perovskite. Chemistry of Materials, 2005, 17, 5070-5076.	3.2	21
57	Synthesis and study of the crystallographic and magnetic structure of SeCoO3. Physical Review B, 2006, 73, .	1.1	21
58	Crystal and magnetic structure of the double perovskite Sr2CoUO6: a neutron diffraction study. Dalton Transactions, 2005, , 447-451.	1.6	20
59	Magnetic Properties and Neutron Diffraction Measurements of Dense-Kondo Compound CeNi2Al5. Journal of the Physical Society of Japan, 1994, 63, 2349-2358.	0.7	19
60	High-pressure synthesis and study of the crystal and magnetic structure of the distorted SeNiO3and SeMnO3perovskites. Dalton Transactions, 2006, , 4936-4943.	1.6	19
61	Ferromagnetic behavior in La(Cu3â^'xMnx)Mn4O12 (x=1,2) perovskites. Journal of Applied Physics, 2008, 104, 083911.	1.1	19
62	Large linear magnetoelectric effect and field-induced ferromagnetism and ferroelectricity in DyCrO4. NPG Asia Materials, $2019,11,.$	3.8	19
63	Synthesis and Study of the Crystallographic and Magnetic Structure of HoFeMnO5. European Journal of Inorganic Chemistry, 2007, 2007, 1972-1979.	1.0	18
64	Microstructure and temperature dependence of the microhardness of W–4V–1La2O3 and W–4Ti–1La2O3. Journal of Nuclear Materials, 2013, 442, S229-S232.	1.3	17
65	Microstructure and mechanical properties of an ITER-grade Cu–Cr–Zr alloy processed by equal channel angular pressing. Fusion Engineering and Design, 2015, 98-99, 1978-1981.	1.0	17
66	Discontinuously reinforced titanium matrix composites for fusion applications. Journal of Nuclear Materials, 2002, 307-311, 691-695.	1.3	16
67	Crystal growth of NdNiO3perovskite under high oxygen pressure. Journal of Physics Condensed Matter, 2004, 16, S1277-S1281.	0.7	15
68	Effect of yttrium addition on the microstructure and mechanical properties of ODS RAF steels. Journal of Nuclear Materials, 2014, 455, 600-604.	1.3	15
69	Relationship between hardness and tensile tests in titanium reinforced with yttria nanoparticles. Materials Science & Dy Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 400-401, 345-348.	2.6	14
70	Magnetic Structures of HoCoO3and TbCoO3. European Journal of Inorganic Chemistry, 2012, 2012, 5825-5830.	1.0	14
71	xmins:mmi="http://www.w3.org/1998/Math/Math/ML"> <mmi:mrow><mmi:mi mathvariant="normal">F<mml:msub><mml:mi mathvariant="normal">e<mml:mn>4</mml:mn></mml:mi </mml:msub><mml:mi mathvariant="normal">N<mml:msub><mml:mi< td=""><td>1.1</td><td>14</td></mml:mi<></mml:msub></mml:mi </mmi:mi </mmi:mrow>	1.1	14
72	Thermal stability of the grain structure in the W-2V and W-2V-0.5Y2O3 alloys produced by hot isostatic pressing. Fusion Engineering and Design, 2013, 88, 2636-2640.	1.0	13

#	Article	IF	Citations
73	Processing, microstructure and mechanical characterization of dispersion strengthened Cu-1%Y. Fusion Engineering and Design, 2019, 138, 321-331.	1.0	13
74	Small-angle neutron scattering study of the nano-sized features in an oxide dispersion-strengthened Fe12Cr alloy. Philosophical Magazine, 2015, 95, 2450-2465.	0.7	11
75	Cytocompatibility, biofilm assembly and corrosion behavior of Mg-HAP composites processed by extrusion. Materials Science and Engineering C, 2017, 78, 667-673.	3.8	11
76	Crystal and magnetic study of the disordered perovskites Ca(Mn0.5Sb0.5)O3 and Ca(Fe0.5Sb0.5)O3. Materials Research Bulletin, 2010, 45, 1449-1454.	2.7	10
77	High-Temperature Behavior and Polymorphism in Novel Members of the Perovskite Family Pb2LnSbO6(Ln = Ho, Er, Yb, Lu). Inorganic Chemistry, 2011, 50, 5545-5557.	1.9	10
78	Influence of processing route and yttria additions on the oxidation behavior of tungsten. Journal of Nuclear Materials, 2013, 442, S214-S218.	1.3	10
79	Influence of yttria additions on the oxidation behaviour of titanium prepared by powder metallurgy. Scripta Materialia, 2009, 60, 1008-1011.	2.6	9
80	Synthesis, structural study and magnetic properties of TbFeMnO5. Solid State Communications, 2010, 150, 1831-1836.	0.9	9
81	Thermal conductivity and diffusivity of Cu-Y alloys produced by different powder metallurgy routes. Fusion Engineering and Design, 2017, 124, 1156-1160.	1.0	9
82	Enhancing the NÃ \otimes el temperature in 3d/5d R2NilrO6 (R=La, Pr and Nd) double perovskites by reducing the R3+ ionic radii. Acta Materialia, 2021, 207, 116684.	3.8	9
83	Magnetic structure evolution of Pr1â°'xMnO3 perovskite from neutron powder diffraction data. Solid State Communications, 1999, 113, 227-231.	0.9	8
84	Annealing-Induced Enhancement of the Gas Diffusivity in Coextruded LLDPE Films Investigated by Positron Lifetime Spectroscopy. Macromolecules, 2002, 35, 8088-8092.	2.2	8
85	On the magnetic structure of PrMn ₂ O ₅ : a neutron diffraction study. Journal of Physics Condensed Matter, 2012, 24, 076003.	0.7	8
86	Microstructural and mechanical characterization of Cu-0.8 wt.%Y. Fusion Engineering and Design, 2015, 98-99, 1941-1944.	1.0	8
87	Fabrication and characterization of dispersion strengthened Cu-0.8%Y. Fusion Engineering and Design, 2020, 154, 111548.	1.0	8
88	SANS characterization of particle dispersions in W-Ti and W-V alloys. International Journal of Refractory Metals and Hard Materials, 2016, 61, 173-178.	1.7	7
89	Magnetic structures of Ce-rich compounds Ce5Sn3 and Ce5Sn4. Journal of Magnetism and Magnetic Materials, 1992, 116, 419-431.	1.0	6
90	High-pressure synthesis and study of the crystal and magnetic structures of the distorted SeMO ₃ (M= Mn, Co, Ni, Zn) perovskites. Journal of Physics: Conference Series, 2008, 121, 032004.	0.3	6

#	Article	IF	CITATIONS
91	Unusual magnetic structures in Ce3Al11. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 1229-1230.	1.0	5
92	Tribological study of vanadium-based alloys ion implanted at low energy and high temperature. Vacuum, 2002, 67, 543-550.	1.6	5
93	A neutron diffraction study of the crystallographic and magnetic structure of LuVO3. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 2163-2164.	1.0	5
94	Moderate-pressure Synthesis and Neutron Diffraction Study of New Metastable Oxides. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2006, 61, 1507-1514.	0.3	5
95	Raman and infrared spectroscopy of Sr2Bâ \in 2UO6 (Bâ \in 2 = Ni; Co) double perovskites. Vibrational Spectroscopy, 2010, 54, 142-147.	1.2	5
96	Fabrication and characterization of Cu reinforced with Y-enriched particles following a novel powder metallurgy route. Nuclear Materials and Energy, 2021, 29, 101075.	0.6	5
97	Exploring CuCrFeVTi system to produce high entropy alloys for high heat flux applications. Nuclear Materials and Energy, 2021, 29, 101065.	0.6	5
98	Effect of Ti solute on the recovery of cold-rolled V–Ti alloys. Journal of Nuclear Materials, 1999, 275, 138-145.	1.3	4
99	Study of the incommensurate–commensurate magnetic transition in HoMnO3 perovskite. Journal of Alloys and Compounds, 2001, 323-324, 486-489.	2.8	4
100	Grain boundary misorientation and positron annihilation characteristics in steel Eurofer processed by equal channel angular pressing. Journal of Materials Science, 2014, 49, 6722-6733.	1.7	4
101	Thermal Stability Study of Vacancyâ€Type Defects in Commercial Pure Titanium Using Positron Annihilation Spectroscopy. Advanced Engineering Materials, 2017, 19, 1500649.	1.6	4
102	Oxidation behaviour of tungsten with vanadium additions. Fusion Engineering and Design, 2019, 146, 783-786.	1.0	4
103	Crystal Growth of RNiO ₃ Perovskites Under High Oxygen Pressure and Hydrothermal Conditions Materials Research Society Symposia Proceedings, 2005, 878, 1.	0.1	3
104	Serrated flow in powder metallurgy Al–5%Mg–1.2%Cr alloy processed by equal channel angular pressing. Materials Characterization, 2012, 73, 16-30.	1.9	3
105	Influence of the Bi3+electron lone pair in the evolution of the crystal and magnetic structure of La1â^2xBixMn2O5oxides. Journal of Physics Condensed Matter, 2013, 25, 216002.	0.7	3
106	Mechanical properties and microstructure of W/CuY and W/CuCrZr composites produced by hot isostatic pressing. Fusion Engineering and Design, 2019, 146, 1829-1833.	1.0	3
107	Magnetization spin reversal and neutron diffraction study of polycrystalline Tb0.55Sr0.45MnO3. Journal of Alloys and Compounds, 2020, 845, 156355.	2.8	3
108	Evolution from sinusoidal to collinear A-type antiferromagnetic spin-ordered magnetic phase transition in Tb _{1\hat{a}^x} Pr _x MnO ₃ solid solution. Journal of Physics Condensed Matter, 2021, 33, 265802.	0.7	3

#	Article	IF	CITATIONS
109	Characterization and evaluation of CuCrFeV(Ti, Ta, W) system for High Heat Flux applications. Nuclear Materials and Energy, 2022, 31, 101187.	0.6	3
110	Neutron diffraction study of dense-Kondo compound CeNi2Al5. Physica B: Condensed Matter, 1994, 194-196, 373-374.	1.3	2
111	<title>High-resolution multigas sensors based on solid state resonant cavities</title> ., 1996, , .		2
112	Titanium segregation mechanism in deformed vanadium-titanium alloys. Philosophical Magazine Letters, 2001, 81, 259-264.	0.5	2
113	Magnetic properties and magnetic structure of. Journal of Magnetism and Magnetic Materials, 2007, 310, 1575-1577.	1.0	2
114	Influence of 1 and $5\text{\^{A}}wt\%$ TiC additions on the oxidation behaviour of pure tungsten. Nuclear Materials and Energy, 2020, 24, 100780.	0.6	2
115	Microstructure and mechanical properties of hot rolled ODS copper. Nuclear Materials and Energy, 2020, 24, 100754.	0.6	2
116	High-heat flux Cu-0.8Y alloys investigated by positron annihilation spectroscopy. Journal of Alloys and Compounds, 2022, 900, 163430.	2.8	2
117	Intergranular Coulomb barriers in thin films of magnetoresistive manganites. Thin Solid Films, 2000, 373, 94-97.	0.8	1
118	Effects of heat treatment conditions on the microstructure and impact properties of EUROFER 97 ODS steel. Physica Scripta, 2011, T145, 014083.	1.2	1
119	Stress strain curves for thick electroformed Cu pieces. Fusion Engineering and Design, 2018, 127, 17-22.	1.0	1
120	Production and characterization of the Cr35Fe35V16.5Mo6Ti7.5 high entropy alloy. Nuclear Materials and Energy, 2022, 30, 101148.	0.6	1
121	Magnetization density in Ce3Al11. Journal of Physics Condensed Matter, 1995, 7, 8821-8831.	0.7	0
122	Thermal Evolution of the Crystallographic and Magnetic Structure in LuVO3: A Neutron Diffraction Study ChemInform, 2004, 35, no.	0.1	0
123	Synthesis, Structural, and Magnetic Characterization of a New Ferrimagnetic Oxide: YFeMnO5 ChemInform, 2004, 35, no.	0.1	0
124	A Study of the Magnetic Structure of LaMn2O5 from Neutron Powder Diffraction Data ChemInform, 2005, 36, no.	0.1	0
125	Peculiar Magnetic Behavior of the TbCu3Mn4O12 Complex Perovskite ChemInform, 2005, 36, no.	0.1	0
126	The materials production and processing facility at the Spanish National Centre for fusion technologies (TechnoFusi \tilde{A}^3 n). Fusion Engineering and Design, 2011, 86, 2538-2540.	1.0	0

Angel MuÃʻoz

#	Article	IF	CITATIONS
127	PRO5 IMPACT of Prophylaxis Costs in a Pediatric Patient Diagnosed with Severe Hemophilia a with Inhibitors in Guayaquil, Ecuador. Value in Health Regional Issues, 2020, 22, S95.	0.5	O
128	Microstructure of a new ODS Cu–0.7wt-%Cr–0.11wt-%Zr material produced by a novel powder metallurgical method. Powder Metallurgy, 2022, 65, 235-241.	0.9	0