
Robert P De Vries

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3154990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nature Chemical Biology, 2022, 18, 81-90.	3.9	141
2	<i>N</i> -Glycolylneuraminic Acid Binding of Avian and Equine H7 Influenza A Viruses. Journal of Virology, 2022, 96, jvi0212021.	1.5	14
3	Influenza D binding properties vary amongst the two major virus clades and wildlife species. Veterinary Microbiology, 2022, 264, 109298.	0.8	7
4	Pathobiology of highly pathogenic H5 avian influenza viruses in naturally infected Galliformes and Anseriformes in France during winter 2015–2016. Veterinary Research, 2022, 53, 11.	1.1	11
5	Distinct spatial arrangements of ACE2 and TMPRSS2 expression in Syrian hamster lung lobes dictates SARS-CoV-2 infection patterns. PLoS Pathogens, 2022, 18, e1010340.	2.1	13
6	Synthetic <i>O</i> -Acetylated Sialosides and their Acetamido-deoxy Analogues as Probes for Coronaviral Hemagglutinin-esterase Recognition. Journal of the American Chemical Society, 2022, 144, 424-435.	6.6	4
7	Multimerization- and glycosylation-dependent receptor binding of SARS-CoV-2 spike proteins. PLoS Pathogens, 2021, 17, e1009282.	2.1	42
8	Tissue Microarrays to Visualize Influenza D Attachment to Host Receptors in the Respiratory Tract of Farm Animals. Viruses, 2021, 13, 586.	1.5	9
9	N-Glycolylneuraminic Acid in Animal Models for Human Influenza A Virus. Viruses, 2021, 13, 815.	1.5	12
10	Heparan Sulfate Proteoglycans as Attachment Factor for SARS-CoV-2. ACS Central Science, 2021, 7, 1009-1018.	5.3	113
11	Characterization of human FDCs reveals regulation of T cells and antigen presentation to B cells. Journal of Experimental Medicine, 2021, 218, .	4.2	30
12	Glycan remodeled erythrocytes facilitate antigenic characterization of recent A/H3N2 influenza viruses. Nature Communications, 2021, 12, 5449.	5.8	35
13	Functionality of the putative surface glycoproteins of the Wuhan spiny eel influenza virus. Nature Communications, 2021, 12, 6161.	5.8	6
14	Three Amino Acid Changes in Avian Coronavirus Spike Protein Allow Binding to Kidney Tissue. Journal of Virology, 2020, 94, .	1.5	42
15	Hierarchical Multivalent Effects Control Influenza Host Specificity. ACS Central Science, 2020, 6, 2311-2318.	5.3	20
16	Drivers of recombinant soluble influenza A virus hemagglutinin and neuraminidase expression in mammalian cells. Protein Science, 2020, 29, 1975-1982.	3.1	6
17	Phenotypic Effects of Substitutions within the Receptor Binding Site of Highly Pathogenic Avian Influenza H5N1 Virus Observed during Human Infection. Journal of Virology, 2020, 94, .	1.5	8
18	Influenza Virus Hemagglutinins H2, H5, H6, and H11 Are Not Targets of Pulmonary Surfactant Protein D: <i>N</i> -Glycan Subtypes in Host-Pathogen Interactions. Journal of Virology, 2020, 94, .	1.5	10

ROBERT P DE VRIES

#	Article	IF	CITATIONS
19	E190V substitution of H6 hemagglutinin is one of key factors for binding to sulfated sialylated glycan receptor and infection to chickens. Microbiology and Immunology, 2020, 64, 304-312.	0.7	10
20	The Microbiota Contributes to the Control of Highly Pathogenic H5N9 Influenza Virus Replication in Ducks. Journal of Virology, 2020, 94, .	1.5	15
21	Enhanced Inhibition of Influenza A Virus Adhesion by Di- and Trivalent Hemagglutinin Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 6398-6404.	2.9	23
22	N-Glycolylneuraminic Acid as a Receptor for Influenza A Viruses. Cell Reports, 2019, 27, 3284-3294.e6.	2.9	78
23	Protectingâ€Groupâ€Controlled Enzymatic Glycosylation of Oligoâ€ <i>N</i> â€Acetyllactosamine Derivatives. Angewandte Chemie - International Edition, 2019, 58, 10547-10552.	7.2	27
24	Glycosylation of the viral attachment protein of avian coronavirus is essential for host cell and receptor binding. Journal of Biological Chemistry, 2019, 294, 7797-7809.	1.6	68
25	Virus recognition of glycan receptors. Current Opinion in Virology, 2019, 34, 117-129.	2.6	104
26	Guinea Fowl Coronavirus Diversity Has Phenotypic Consequences for Glycan and Tissue Binding. Journal of Virology, 2019, 93, .	1.5	17
27	Liposome-targeted recombinant human acid sphingomyelinase: Production, formulation, and in vitro evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 137, 185-195.	2.0	12
28	Fluorescent Trimeric Hemagglutinins Reveal Multivalent Receptor Binding Properties. Journal of Molecular Biology, 2019, 431, 842-856.	2.0	36
29	Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation. Journal of Virology, 2018, 92, .	1.5	23
30	The 150-Loop Restricts the Host Specificity of Human H10N8 Influenza Virus. Cell Reports, 2017, 19, 235-245.	2.9	35
31	Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity. Cell Host and Microbe, 2017, 21, 23-34.	5.1	163
32	A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to humanâ€ŧype receptors. EMBO Molecular Medicine, 2017, 9, 1314-1325.	3.3	44
33	Glycosylation Characterization of an Influenza H5N7 Hemagglutinin Series with Engineered Glycosylation Patterns: Implications for Structure–Function Relationships. Journal of Proteome Research, 2017, 16, 398-412.	1.8	19
34	Three mutations switch H7N9 influenza to human-type receptor specificity. PLoS Pathogens, 2017, 13, e1006390.	2.1	83
35	A Miniaturized Glycan Microarray Assay for Assessing Avidity and Specificity of Influenza A Virus Hemagglutinins. Journal of Visualized Experiments, 2016, , .	0.2	9
36	Amino acid residues at positions 222 and 227 of the hemagglutinin together with the neuraminidase determine binding of H5 avian influenza viruses to sialyl Lewis X. Archives of Virology, 2016, 161, 307-316.	0.9	38

ROBERT P DE VRIES

#	Article	IF	CITATIONS
37	A Human-Infecting H10N8 Influenza Virus Retains a Strong Preference for Avian-type Receptors. Cell Host and Microbe, 2015, 17, 377-384.	5.1	54
38	Structure and Receptor Binding of the Hemagglutinin from a Human H6N1 Influenza Virus. Cell Host and Microbe, 2015, 17, 369-376.	5.1	44
39	Novel Receptor Specificity of Avian Gammacoronaviruses That Cause Enteritis. Journal of Virology, 2015, 89, 8783-8792.	1.5	33
40	Host Tissue and Glycan Binding Specificities of Avian Viral Attachment Proteins Using Novel Avian Tissue Microarrays. PLoS ONE, 2015, 10, e0128893.	1.1	11
41	Hemagglutinin Receptor Specificity and Structural Analyses of Respiratory Droplet-Transmissible H5N1 Viruses. Journal of Virology, 2014, 88, 768-773.	1.5	61
42	Characterization of H7N9 influenza A viruses isolated from humans. Nature, 2013, 501, 551-555.	13.7	371
43	Preferential Recognition of Avian-Like Receptors in Human Influenza A H7N9 Viruses. Science, 2013, 342, 1230-1235.	6.0	133
44	A General Strategy for the Chemoenzymatic Synthesis of Asymmetrically Branched <i>N</i> -Glycans. Science, 2013, 341, 379-383.	6.0	304
45	Evolution of the Hemagglutinin Protein of the New Pandemic H1N1 Influenza Virus: Maintaining Optimal Receptor Binding by Compensatory Substitutions. Journal of Virology, 2013, 87, 13868-13877.	1.5	37
46	H5N1 receptor specificity as a factor in pandemic risk. Virus Research, 2013, 178, 99-113.	1.1	56
47	Synthesis of Biologically Active <i>N</i> - and <i>O</i> -Linked Glycans with Multisialylated Poly- <i>N</i> -acetyllactosamine Extensions Using <i>P. damsela</i> î±2-6 Sialyltransferase. Journal of the American Chemical Society, 2013, 135, 18280-18283.	6.6	55
48	Glycan-Dependent Immunogenicity of Recombinant Soluble Trimeric Hemagglutinin. Journal of Virology, 2012, 86, 11735-11744.	1.5	60
49	Influenza A virus entry into cells lacking sialylated N-glycans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7457-7462.	3.3	64
50	Protective Efficacy of Newcastle Disease Virus Expressing Soluble Trimeric Hemagglutinin against Highly Pathogenic H5N1 Influenza in Chickens and Mice. PLoS ONE, 2012, 7, e44447.	1.1	22
51	A stabilized HIV-1 envelope glycoprotein trimer fused to CD40 ligand targets and activates dendritic cells. Retrovirology, 2011, 8, 48.	0.9	27
52	Only Two Residues Are Responsible for the Dramatic Difference in Receptor Binding between Swine and New Pandemic H1 Hemagglutinin. Journal of Biological Chemistry, 2011, 286, 5868-5875.	1.6	60
53	Binding of Avian Coronavirus Spike Proteins to Host Factors Reflects Virus Tropism and Pathogenicity. Journal of Virology, 2011, 85, 8903-8912.	1.5	153
54	The influenza A virus hemagglutinin glycosylation state affects receptor-binding specificity. Virology, 2010, 403, 17-25.	1.1	108

#	Article	IF	CITATIONS
55	A Single Immunization with Soluble Recombinant Trimeric Hemagglutinin Protects Chickens against Highly Pathogenic Avian Influenza Virus H5N1. PLoS ONE, 2010, 5, e10645.	1.1	66
56	Recombinant Soluble, Multimeric HA and NA Exhibit Distinctive Types of Protection against Pandemic Swine-Origin 2009 A(H1N1) Influenza Virus Infection in Ferrets. Journal of Virology, 2010, 84, 10366-10374.	1.5	96
57	Wild and domestic animals variably display Neu5Ac and Neu5Gc sialic acids. Glycobiology, 0, , .	1.3	3