Ijaz Hussain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3154854/publications.pdf

Version: 2024-02-01

686830 610482 79 866 13 24 h-index citations g-index papers 81 81 81 782 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Selection of appropriate time scale with Boruta algorithm for regional drought monitoring using multi-scaler drought index. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 71, 1604057.	0.8	12
2	A Probabilistic Weighted Joint Aggregative Drought Index (PWJADI) criterion for drought monitoring systems. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 71, 1588584.	0.8	16
3	A novel generalized combinative procedure for Multi-Scalar standardized drought Indices-The long average weighted joint aggregative criterion. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 72, 1736248.	0.8	6
4	A novel spatially weighted accumulative procedure for regional drought monitoring. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 72, 1838194.	0.8	16
5	Measuring and restructuring the risk in forecasting drought classes: an application of weighted Markov chain based model for standardised precipitation evapotranspiration index (SPEI) at one-month time scale. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 72, 1840209.	0.8	5
6	Identification of homogeneous rainfall regions in New South Wales, Australia. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 73, 1907979.	0.8	6
7	Agricultural drought periods analysis by using nonhomogeneous poisson models and regionalization of appropriate model parameters. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 73, 1948241.	0.8	1
8	A new propagation-based framework to enhance competency in regional drought monitoring. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 73, 1975404.	0.8	9
9	A new framework to substantiate the prevalence of drought intensities. Theoretical and Applied Climatology, 2022, 147, 1079-1090.	1.3	8
10	Assessing the Probability of Drought Severity in a Homogeneous Region. Complexity, 2022, 2022, 1-8.	0.9	8
11	Improvement towards Prediction Accuracy of Principle Mineral Resources Using Threshold. Mathematical Problems in Engineering, 2022, 2022, 1-18.	0.6	0
12	A Proposed Comparative Algorithm for Regional Crop Yield Assessment: An Application of Characteristic Objects Method. Mathematical Problems in Engineering, 2022, 2022, 1-11.	0.6	0
13	A new comprehensive approach for regional drought monitoring. PeerJ, 2022, 10, e13377.	0.9	6
14	A new spatiotemporal two-stage standardized weighted procedure for regional drought analysis. Peerl, 2022, 10, e13249.	0.9	7
15	Characterization of Meteorological Drought Using Monte Carlo Feature Selection and Steady-State Probabilities. Complexity, 2022, 2022, 1-19.	0.9	7
16	Spatiotemporal analysis of meteorological drought variability in a homogeneous region using standardized drought indices. Geomatics, Natural Hazards and Risk, 2022, 13, 1457-1481.	2.0	8
17	Proportional odds model for identifying spatial inter-seasonal propagation of meteorological drought. Geomatics, Natural Hazards and Risk, 2022, 13, 1614-1639.	2.0	5
18	Statistical analysis of modified Hargreaves equation for precise estimation of reference evapotranspiration. Tellus, Series A: Dynamic Meteorology and Oceanography, 2021, 73, 1-12.	0.8	5

#	Article	IF	Citations
19	Modeling drought duration and severity using two-dimensional copula. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 214, 105530.	0.6	13
20	Modeling and forecasting of principal minerals production. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	2
21	A seasonally blended and regionally integrated drought index using <scp>Bayesian</scp> network theory. Meteorological Applications, 2021, 28, e1992.	0.9	12
22	Robust regularization for high-dimensional Cox's regression model using weighted likelihood criterion. Chemometrics and Intelligent Laboratory Systems, 2021, 213, 104285.	1.8	4
23	Prediction of Drought Severity Using Model-Based Clustering. Mathematical Problems in Engineering, 2021, 2021, 1-10.	0.6	9
24	The Analysis of the Incidence Rate of the COVID-19 Pandemic Based on Segmented Regression for Kuwait and Saudi Arabia. Mathematical Problems in Engineering, 2021, 2021, 1-11.	0.6	1
25	Development of Hybrid Methods for Prediction of Principal Mineral Resources. Mathematical Problems in Engineering, 2021, 2021, 1-17.	0.6	2
26	Reduction of Errors in Hydrological Drought Monitoring – A Novel Statistical Framework for Spatio-Temporal Assessment of Drought. Water Resources Management, 2021, 35, 4363-4380.	1.9	8
27	A novel framework for regional pattern recognition of drought intensities. Arabian Journal of Geosciences, $2021, 14, 1$.	0.6	10
28	Forecasting \hat{A} and modeling of atmospheric methane concentration. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	3
29	Use of non-homogeneous Poisson process for the analysis of new cases, deaths, and recoveries of COVID-19 patients: A case study of Kuwait. Journal of King Saud University - Science, 2021, 33, 101614.	1.6	3
30	Prediction for Various Drought Classes Using Spatiotemporal Categorical Sequences. Complexity, 2021, 1-11.	0.9	9
31	Logistic Regression Analysis for Spatial Patterns of Drought Persistence. Complexity, 2021, 2021, 1-13.	0.9	9
32	An ensemble procedure for pattern recognition of regional drought. International Journal of Climatology, 2020, 40, 94-114.	1.5	5
33	Characterization of regional hydrological drought using improved precipitation records under multi-auxiliary information. Theoretical and Applied Climatology, 2020, 140, 25-36.	1.3	7
34	An experimental and algorithm-based study of the spectral features of breast cancer patients by a photodiagnosis approach. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101851.	1.3	3
35	Bayesian network based procedure for regional drought monitoring: The Seasonally Combinative Regional Drought Indicator. Journal of Environmental Management, 2020, 276, 111296.	3.8	16
36	On the more generalized nonâ€parametric framework for the propagation of uncertainty in drought monitoring. Meteorological Applications, 2020, 27, e1914.	0.9	3

#	Article	IF	Citations
37	A Novel Framework for Selecting Informative Meteorological Stations Using Monte Carlo Feature Selection (MCFS) Algorithm. Advances in Meteorology, 2020, 2020, 1-13.	0.6	8
38	Propagation of the Multi-Scalar Aggregative Standardized Precipitation Temperature Index and its Application. Water Resources Management, 2020, 34, 699-714.	1.9	7
39	Analysis of agricultural and hydrological drought periods by using non-homogeneous Poisson models: Linear intensity function. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 198, 105190.	0.6	7
40	Monthly drought prediction based on ensemble models. PeerJ, 2020, 8, e9853.	0.9	2
41	Evaluation of wet and dry event's trend and instability based on the meteorological drought index. PeerJ, 2020, 8, e9729.	0.9	4
42	Dependence structure analysis of multisite river inflow data using vine copula-CEEMDAN based hybrid model. PeerJ, 2020, 8, e10285.	0.9	4
43	Stress response and toxicity studies on zebrafish exposed to endosulfan and imidacloprid present in water. Journal of Water Supply: Research and Technology - AQUA, 2019, 68, 718-730.	0.6	7
44	Development of Multidecomposition Hybrid Model for Hydrological Time Series Analysis. Complexity, 2019, 2019, 1-14.	0.9	13
45	Minimum Cost Multiobjective Programming Model for Target Efficiency in Sample Selection. Scientific Programming, 2019, 2019, 1-9.	0.5	0
46	Gender based survival prediction models for heart failure patients: A case study in Pakistan. PLoS ONE, 2019, 14, e0210602.	1.1	34
47	A framework to identify homogeneous drought characterization regions. Theoretical and Applied Climatology, 2019, 137, 3161-3172.	1.3	21
48	Personality is associated with dominance in a social feeding context in the great tit. Behaviour, 2019, 156, 1419-1434.	0.4	8
49	Reservoir Inflow Prediction by Ensembling Wavelet and Bootstrap Techniques to Multiple Linear Regression Model. Water Resources Management, 2019, 33, 5121-5136.	1.9	20
50	An improved framework to predict river flow time series data. PeerJ, 2019, 7, e7183.	0.9	10
51	Improving the prediction accuracy of river inflow using two data pre-processing techniques coupled with data-driven model. PeerJ, 2019, 7, e8043.	0.9	7
52	Effective removal of metal ions from aquous solution by silver and zinc nanoparticles functionalized cellulose: Isotherm, kinetics and statistical supposition of process. Environmental Nanotechnology, Monitoring and Management, 2018, 9, 1-11.	1.7	50
53	A New Weighting Scheme in Weighted Markov Model for Predicting the Probability of Drought Episodes. Advances in Meteorology, 2018, 2018, 1-10.	0.6	4
54	Nonparametric trend analysis of reference evapotranspiration for Khyber Pakhtunkhwa, Pakistan. International Journal of Global Warming, 2018, 14, 313.	0.2	1

#	Article	IF	Citations
55	Trade-off between cost and variance for a multi-objective compromise allocation in stratified random sampling. Communications in Statistics - Theory and Methods, 2017, 46, 2655-2666.	0.6	4
56	A Novel Multi-Scalar Drought Index for Monitoring Drought: the Standardized Precipitation Temperature Index. Water Resources Management, 2017, 31, 4957-4969.	1.9	57
57	Forecasting Drought Using Multilayer Perceptron Artificial Neural Network Model. Advances in Meteorology, 2017, 2017, 1-9.	0.6	74
58	Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator. Computational Intelligence and Neuroscience, 2017, 2017, 1-7.	1.1	95
59	Regional Frequency Analysis of Extremes Precipitation Using L-Moments and Partial L-Moments. Advances in Meteorology, 2017, 2017, 1-20.	0.6	14
60	Robust Adaptive Lasso method for parameter's estimation and variable selection in high-dimensional sparse models. PLoS ONE, 2017, 12, e0183518.	1.1	17
61	Comparison of Two New Robust Parameter Estimation Methods for the Power Function Distribution. PLoS ONE, 2016, 11, e0160692.	1.1	9
62	Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater. PLoS ONE, 2016, 11, e0161810.	1.1	3
63	Classification of Drinking Water Quality Index and Identification of Significant Factors. Water Resources Management, 2016, 30, 4233-4246.	1.9	14
64	Choosing summary statistics by least angle regression for approximate Bayesian computation. Journal of Applied Statistics, 2016, 43, 2191-2202.	0.6	1
65	Multivariate Multi-Objective Allocation in Stratified Random Sampling: A Game Theoretic Approach. PLoS ONE, 2016, 11, e0167705.	1.1	4
66	Prevalence and diagnostic of head and neck cancer in Pakistan. Pakistan Journal of Pharmaceutical Sciences, 2016, 29, 1839-1846.	0.2	6
67	Assessment of spatial models for interpolation of elevation in Pakistan. International Journal of Global Warming, 2015, 7, 409.	0.2	1
68	Multi-objective Compromise Allocation in Multivariate Stratified Sampling Using Extended Lexicographic Goal Programming with Gamma Cost Function. Mathematical Modelling and Algorithms, 2015, 14, 255-265.	0.5	9
69	Spatial Interpolation of Sulfate Concentration in Groundwater Including Covariates Using Bayesian Hierarchical Models. Water Quality, Exposure, and Health, 2015, 7, 339-345.	1.5	4
70	Spatial Distribution of Sulfate Concentration in Groundwater of South-Punjab, Pakistan. Water Quality, Exposure, and Health, 2015, 7, 503-513.	1.5	10
71	Distribution of Total Dissolved Solids in Drinking Water by Means of Bayesian Kriging and Gaussian Spatial Predictive Process. Water Quality, Exposure, and Health, 2014, 6, 177-185.	1.5	24
72	Role of Livestock in Food Security: An Ascertainment from Punjab Pakistan. International Journal of Academic Research in Business and Social Sciences, 2014, 4, .	0.0	4

#	Article	IF	CITATIONS
73	A new approach to choose acceptance cutoff for approximate Bayesian computation. Journal of Applied Statistics, 2013, 40, 862-869.	0.6	7
74	Spatial sampling design based on convex design ideas and using external drift variables for a rainfall monitoring network in Pakistan. Statistical Methodology, 2012, 9, 195-210.	0.5	1
75	Homogeneous climate regions in Pakistan. International Journal of Global Warming, 2011, 3, 55.	0.2	9
76	Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan. Advances in Water Resources, 2010, 33, 880-886.	1.7	33
77	Strauss point modeling for seismic activity: a case study of earthquakes. Modeling Earth Systems and Environment, 0 , , 1 .	1.9	1
78	Hierarchical Bayesian space-time interpolation versus spatio-temporal BME approach. Advances in Geosciences, 0, 25, 97-102.	12.0	8
79	Reply to Comment on & Description on Reply to Comment on & Company of the Reply to Comment on Samp; quot; Hierarchical Bayesian space-time interpolation versus spatio-temporal BME approach& Description of the Reply to Comment on Reply to Comment	12.0	0