Dohyung Kim

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3154852/dohyung-kim-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18 40 5,344 37 h-index g-index citations papers 6,474 5.87 40 14.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
37	Nanoparticle Assembly Induced Ligand Interactions for Enhanced Electrocatalytic CO Conversion. Journal of the American Chemical Society, 2021 , 143, 19919-19927	16.4	5
36	Ferroelectric and Charge Transport Properties in Strain-Engineered Two-Dimensional Lead Iodide Perovskites. <i>Chemistry of Materials</i> , 2021 , 33, 4077-4088	9.6	2
35	Navigating grain boundaries in perovskite solar cells. <i>Matter</i> , 2021 , 4, 1442-1445	12.7	2
34	Exploring Responses of Contact Kelvin Probe Force Microscopy in Triple-Cation Double-Halide Perovskites. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 12355-12365	3.8	0
33	Ferroic Halide Perovskite Optoelectronics. <i>Advanced Functional Materials</i> , 2021 , 31, 2102793	15.6	6
32	Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of Environmental-Dependent Impedance Spectroscopy. <i>Advanced Science</i> , 2021 , 8, e2002510	13.6	7
31	Elucidating the Spatial Dynamics of Charge Carriers in Quasi-Two-Dimensional Perovskites. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 13, 35133-35141	9.5	3
30	Ferroic Halide Perovskite Optoelectronics (Adv. Funct. Mater. 36/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170263	15.6	0
29	The deep-DRT: A deep neural network approach to deconvolve the distribution of relaxation times from multidimensional electrochemical impedance spectroscopy data. <i>Electrochimica Acta</i> , 2021 , 392, 139010	6.7	7
28	Unraveling the hysteretic behavior at double cations-double halides perovskite - electrode interfaces. <i>Nano Energy</i> , 2021 , 89, 106428	17.1	3
27	Self-Assembled Perovskite Nanoislands on CH 3 NH 3 PbI 3 Cuboid Single Crystals by Energetic Surface Engineering (Adv. Funct. Mater. 50/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170371	15.6	1
26	Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer. <i>Nature Energy</i> , 2020 , 5, 1032-1042	62.3	28
25	Imaging mechanism for hyperspectral scanning probe microscopy via Gaussian process modelling. <i>Npj Computational Materials</i> , 2020 , 6,	10.9	9
24	Estimating Preisach Density via Subset Selection. <i>IEEE Access</i> , 2020 , 8, 61767-61774	3.5	1
23	Device design rules and operation principles of high-power perovskite solar cells for indoor applications. <i>Nano Energy</i> , 2020 , 68, 104321	17.1	39
22	Super-resolution and signal separation in contact Kelvin probe force microscopy of electrochemically active ferroelectric materials. <i>Journal of Applied Physics</i> , 2020 , 128, 055101	2.5	3
21	Fluorine-mediated porosity and crystal-phase tailoring of meso-macroporous F TiO2 nanofibers and their enhanced photocatalytic performance. <i>Thin Solid Films</i> , 2019 , 689, 137523	2.2	1

(2015-2019)

20	Light- and bias-induced structural variations in metal halide perovskites. <i>Nature Communications</i> , 2019 , 10, 444	17.4	51
19	Probing Facet-Dependent Surface Defects in MAPbI3 Perovskite Single Crystals. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 14144-14151	3.8	43
18	Temperature-Dependent Magnetic Domain Evolution in Noncollinear Ferrimagnetic FeV2O4 Thin Films. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 817-822	4	2
17	Designing materials for electrochemical carbon dioxide recycling. <i>Nature Catalysis</i> , 2019 , 2, 648-658	36.5	442
16	Spatially Resolved Carrier Dynamics at MAPbBr Single Crystal-Electrode Interface. <i>ACS Applied Materials & ACS Applied & ACS Appli</i>	9.5	13
15	Humidity-Induced Degradation via Grain Boundaries of HC(NH2)2PbI3 Planar Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1705363	15.6	172
14	Room temperature in-plane ferroelectricity in van der Waals InSe. <i>Science Advances</i> , 2018 , 4, eaar7720	14.3	135
13	High-Efficiency Rubidium-Incorporated Perovskite Solar Cells by Gas Quenching. <i>ACS Energy Letters</i> , 2017 , 2, 438-444	20.1	200
12	Ultrathin Epitaxial Cu@Au Core-Shell Nanowires for Stable Transparent Conductors. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7348-7354	16.4	87
11	Electrochemical Activation of CO through Atomic Ordering Transformations of AuCu Nanoparticles. Journal of the American Chemical Society, 2017 , 139, 8329-8336	16.4	392
10	Magnetic and Magnetodielectric Properties of Epitaxial Iron Vanadate Thin Films. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600295	6.4	7
9	Copper nanoparticle ensembles for selective electroreduction of CO to C-C products. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 10560-10565	11.5	331
8	Control of Architecture in Rhombic Dodecahedral Pt-Ni Nanoframe Electrocatalysts. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11678-11681	16.4	140
7	Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. <i>Nature Materials</i> , 2016 , 15, 1188-1194	27	205
6	Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO2 Reduction. <i>Nano Letters</i> , 2016 , 16, 5675-80	11.5	105
5	Covalent organic frameworks comprising cobalt porphyrins for catalytic COI reduction in water. <i>Science</i> , 2015 , 349, 1208-13	33.3	1540
4	Klistliche Photosynthese fildie Produktion von nachhaltigen Kraftstoffen und chemischen Produkten. <i>Angewandte Chemie</i> , 2015 , 127, 3309-3316	3.6	60
3	Artificial photosynthesis for sustainable fuel and chemical production. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3259-66	16.4	444

Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. *Nature Communications*, **2014**, 5, 4948

17.4 854

Self-Assembled Perovskite Nanoislands on CH3NH3Pbl3 Cuboid Single Crystals by Energetic Surface Engineering. *Advanced Functional Materials*,2105542

15.6 3