
Marta Mas-Torrent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3154793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Molecular Order and Solid-State Structure in Organic Field-Effect Transistors. Chemical Reviews, 2011, 111, 4833-4856.	23.0	499
2	Novel small molecules for organic field-effect transistors: towards processability and high performance. Chemical Society Reviews, 2008, 37, 827.	18.7	446
3	High Mobility of Dithiophene-Tetrathiafulvalene Single-Crystal Organic Field Effect Transistors. Journal of the American Chemical Society, 2004, 126, 984-985.	6.6	327
4	Correlation between Crystal Structure and Mobility in Organic Field-Effect Transistors Based on Single Crystals of Tetrathiafulvalene Derivatives. Journal of the American Chemical Society, 2004, 126, 8546-8553.	6.6	265
5	A robust molecular platform for non-volatile memory devices with optical and magnetic responses. Nature Chemistry, 2011, 3, 359-364.	6.6	192
6	Attaching Persistent Organic Free Radicals to Surfaces: How and Why. Chemical Reviews, 2012, 112, 2506-2527.	23.0	166
7	Importance of Intermolecular Interactions in Assessing Hopping Mobilities in Organic Field Effect Transistors:Â Pentacene versus Dithiophene-tetrathiafulvalene. Journal of the American Chemical Society, 2004, 126, 6544-6545.	6.6	161
8	Tetrathiafulvalene derivatives for organic field effect transistors. Journal of Materials Chemistry, 2006, 16, 433-436.	6.7	140
9	Single-crystal organic field-effect transistors based on dibenzo-tetrathiafulvalene. Applied Physics Letters, 2005, 86, 012110.	1.5	130
10	Organic radicals on surfaces: towards molecular spintronics. Journal of Materials Chemistry, 2009, 19, 1691-1695.	6.7	127
11	Kondo Effect in a Neutral and Stable All Organic Radical Single Molecule Break Junction. Nano Letters, 2015, 15, 3109-3114.	4.5	117
12	Highâ€Performance Single Crystal Organic Fieldâ€Effect Transistors Based on Two Dithiopheneâ€Tetrathiafulvalene (DTâ€TTF) Polymorphs. Advanced Materials, 2010, 22, 4198-4203.	11.1	100
13	Organic Semiconductor/Polymer Blend Films for Organic Fieldâ€Effect Transistors. Advanced Materials Technologies, 2019, 4, 1900104.	3.0	95
14	Single Crystalâ€Like Performance in Solutionâ€Coated Thinâ€Film Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2016, 26, 2379-2386.	7.8	87
15	Isolated Single-Molecule Magnets on the Surface of a Polymeric Thin Film. Advanced Materials, 2003, 15, 42-45.	11.1	85
16	Control of Polymorphism and Morphology in Solution Sheared Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2017, 27, 1700526.	7.8	82
17	Efficient High Area OFETs by Solution Based Processing of a π-Electron Rich Donor. Chemistry of Materials, 2006, 18, 4724-4729.	3.2	80
18	Robust Organic Radical Molecular Junctions Using Acetylene Terminated Groups for C–Au Bond Formation, Journal of the American Chemical Society, 2018, 140, 1691-1696	6.6	79

Marta Mas-Torrent

#	Article	IF	CITATIONS
19	Role of Polymorphism and Thin-Film Morphology in Organic Semiconductors Processed by Solution Shearing. ACS Omega, 2018, 3, 2329-2339.	1.6	77
20	A Rapid, Lowâ€Cost, and Scalable Technique for Printing Stateâ€ofâ€theâ€Art Organic Fieldâ€Effect Transistors. Advanced Materials Technologies, 2016, 1, 1600090.	3.0	76
21	A Three-State Surface-Confined Molecular Switch with Multiple Channel Outputs. Journal of the American Chemical Society, 2011, 133, 13256-13259.	6.6	75
22	Field effect transistors based on poly(3-hexylthiophene) at different length scales. Nanotechnology, 2004, 15, S265-S269.	1.3	73
23	Large Photoresponsivity in High-Mobility Single-Crystal Organic Field-Effect Phototransistors. ChemPhysChem, 2006, 7, 86-88.	1.0	70
24	High-mobility tetrathiafulvalene organic field-effect transistors from solution processing. Organic Electronics, 2008, 9, 1101-1106.	1.4	65
25	Ultrasensitive Piezoresistive Allâ€Organic Flexible Thin Films. Advanced Materials, 2010, 22, 977-981.	11.1	64
26	The four polymorphic modifications of the semiconductor dibenzo-tetrathiafulvalene. CrystEngComm, 2008, 10, 1899.	1.3	62
27	Self-Assembled Monolayers of Electroactive Polychlorotriphenylmethyl Radicals on Au(111). Journal of the American Chemical Society, 2008, 130, 5499-5506.	6.6	62
28	Decoding the Vertical Phase Separation and Its Impact on C8-BTBT/PS Transistor Properties. ACS Applied Materials & Interfaces, 2018, 10, 7296-7303.	4.0	61
29	Morphology and mobility as tools to control and unprecedentedly enhance X-ray sensitivity in organic thin-films. Nature Communications, 2020, 11, 2136.	5.8	59
30	Self-Assembled Monolayers of a Multifunctional Organic Radical. Angewandte Chemie - International Edition, 2007, 46, 2215-2219.	7.2	56
31	Surfaceâ€Confined Electroactive Molecules for Multistate Charge Storage Information. Advanced Materials, 2013, 25, 462-468.	11.1	54
32	High performing solution-coated electrolyte-gated organic field-effect transistors for aqueous media operation. Scientific Reports, 2016, 6, 39623.	1.6	53
33	Chiral magnetic-nanobiofluids for rapid electrochemical screening of enantiomers at a magneto nanocomposite graphene-paste electrode. Biosensors and Bioelectronics, 2018, 105, 95-102.	5.3	51
34	Chemical control over the energy-level alignment in a two-terminal junction. Nature Communications, 2016, 7, 12066.	5.8	50
35	Tuning Crystal Ordering, Electronic Structure, and Morphology in Organic Semiconductors: Tetrathiafulvalenes as a Model Case. Advanced Functional Materials, 2016, 26, 2256-2275.	7.8	50
36	Organic field-effect transistors (OFETs) of highly oriented films of dithiophene-tetrathiafulvalene prepared by zone casting. Organic Electronics, 2008, 9, 143-148.	1.4	49

#	Article	IF	CITATIONS
37	Reduction of Charge Traps and Stability Enhancement in Solution-Processed Organic Field-Effect Transistors Based on a Blended n-Type Semiconductor. ACS Applied Materials & Interfaces, 2018, 10, 15952-15961.	4.0	49
38	Influence of SiO2 surface energy on the performance of organic field effect transistors based on highly oriented, zone-cast layers of a tetrathiafulvalene derivative. Journal of Applied Physics, 2008, 104, 054509.	1.1	45
39	Dramatic Influence of the Electronic Structure on the Conductivity through Open―and Closed‧hell Molecules. Advanced Materials, 2009, 21, 1177-1181.	11.1	45
40	Multichannel Molecular Switch with a Surface-Confined Electroactive Radical Exhibiting Tunable Wetting Properties. Nano Letters, 2011, 11, 4382-4385.	4.5	45
41	Photo-induced intramolecular charge transfer in an ambipolar field-effect transistor based on a ï€-conjugated donor–acceptor dyad. Journal of Materials Chemistry C, 2013, 1, 3985.	2.7	45
42	Towards supramolecular electronics. Synthetic Metals, 2004, 147, 43-48.	2.1	44
43	Electrolyteâ€Gated Organic Fieldâ€Effect Transistor Based on a Solution Sheared Organic Semiconductor Blend. Advanced Materials, 2016, 28, 10311-10316.	11.1	44
44	Proximity-Induced Shiba States in a Molecular Junction. Physical Review Letters, 2017, 118, 117001.	2.9	44
45	Dependence of charge transfer reorganization energy on carrier localisation in organic molecular crystals. Physical Chemistry Chemical Physics, 2008, 10, 121-127.	1.3	43
46	Label-free immunodetection of α-synuclein by using a microfluidics coplanar electrolyte-gated organic field-effect transistor. Biosensors and Bioelectronics, 2020, 167, 112433.	5.3	42
47	Organic metal engineering for enhanced field-effect transistor performance. Physical Chemistry Chemical Physics, 2015, 17, 26545-26552.	1.3	37
48	Molecular Approach to Electrochemically Switchable Monolayer MoS ₂ Transistors. Advanced Materials, 2020, 32, e2000740.	11.1	37
49	Bioelectronic Recordings of Cardiomyocytes with Accumulation Mode Electrolyte Gated Organic Field Effect Transistors. Biosensors and Bioelectronics, 2020, 150, 111844.	5.3	36
50	Flexible organic transistors based on a solution-sheared PVDF insulator. Journal of Materials Chemistry C, 2015, 3, 12199-12202.	2.7	35
51	Organic Spin Ladders from Tetrathiafulvalene (TTF) Derivatives. Advanced Functional Materials, 2005, 15, 1023-1035.	7.8	33
52	Coupling Tetracyanoquinodimethane to Tetrathiafulvalene: A Fused TCNQ–TTF–TCNQ Triad. Angewandte Chemie - International Edition, 2011, 50, 10902-10906.	7.2	33
53	Electron-Withdrawing Substituted Tetrathiafulvalenes as Ambipolar Semiconductors. Chemistry of Materials, 2011, 23, 851-861.	3.2	32
54	New Transparent Metal-like Bilayer Composite Films with Highly Conducting Layers of Î,-(BET-TTF)2Br·3H2O Nanocrystals. Advanced Functional Materials, 2001, 11, 299-303.	7.8	31

#	Article	IF	CITATIONS
55	Two-Leg Molecular Ladders Formed by Hierarchical Self-Assembly of an Organic Radical. Journal of the American Chemical Society, 2009, 131, 6246-6252.	6.6	31
56	Detection of the Early Stage of Recombinational DNA Repair by Silicon Nanowire Transistors. Nano Letters, 2012, 12, 1275-1281.	4.5	31
57	Negative differential resistance (NDR) in similar molecules with distinct redox behaviour. Chemical Communications, 2011, 47, 4664.	2.2	30
58	A Compact Tetrathiafulvalene–Benzothiadiazole Dyad and Its Highly Symmetrical Chargeâ€Transfer Salt: Ordered Donor Ï€â€Stacks Closely Bound to Their Acceptors. Chemistry - A European Journal, 2014, 20, 7136-7143.	1.7	29
59	Sub-50 nm positioning of organic compounds onto silicon oxide patterns fabricated by local oxidation nanolithography. Nanotechnology, 2008, 19, 455308.	1.3	27
60	Novel [60]fullerene–TTF cyclohexene fused polyadducts: unprecedented tri- and tetra-Diels–Alder adducts of dimethylidene[2H]tetrathiafulvalenes with C60. Tetrahedron Letters, 2001, 42, 3447-3450.	0.7	26
61	Operative Mechanism of Hole-Assisted Negative Charge Motion in Ground States of Radical-Anion Molecular Wires. Journal of the American Chemical Society, 2017, 139, 686-692.	6.6	25
62	Electrochemical Growth of Organic Conducting Microcrystals of Tetrathiafulvalene Bromide. Small, 2005, 1, 806-808.	5.2	24
63	Highly piezoresistive textiles based on a soft conducting charge transfer salt. Journal of Materials Chemistry, 2011, 21, 637-640.	6.7	24
64	Morphology Influence on the Mechanical Stress Response in Bendable Organic Fieldâ€Effect Transistors with Solutionâ€Processed Semiconductors. Advanced Electronic Materials, 2018, 4, 1700271.	2.6	24
65	Bulk Spontaneous Magnetization in the New Radical Cation Salt TM-TTF[Cr(NCS)4(isoquinoline)2] (TM-TTF = Tetramethyltetrathiafulvalene). Inorganic Chemistry, 2003, 42, 7544-7549.	1.9	23
66	Solution-processed thin films of a charge transfer complex for ambipolar field-effect transistors. Journal of Materials Chemistry C, 2019, 7, 10257-10263.	2.7	23
67	Enhancing Longâ€Term Device Stability Using Thin Film Blends of Small Molecule Semiconductors and Insulating Polymers to Trap Surfaceâ€Induced Polymorphs. Advanced Functional Materials, 2020, 30, 2006115.	7.8	23
68	Isolation and Characterization of Four Isomers of a C60Bisadduct with a TTF Derivative. Study of Their Radical Ions. Journal of Organic Chemistry, 2002, 67, 566-575.	1.7	22
69	An Electrically Driven and Readable Molecular Monolayer Switch Based on a Solid Electrolyte. Angewandte Chemie - International Edition, 2016, 55, 368-372.	7.2	22
70	A Solidâ€State Aqueous Electrolyteâ€Gated Fieldâ€Effect Transistor as a Lowâ€Voltage Operation Pressureâ€Sensitive Platform. Advanced Materials Interfaces, 2019, 6, 1900719.	1.9	22
71	Perspectives for polychlorinated trityl radicals. Journal of Materials Chemistry C, 2021, 9, 10610-10623.	2.7	22
72	Mobility anisotropy in the herringbone structure of asymmetric Ph-BTBT-10 in solution sheared thin film transistors. Journal of Materials Chemistry C, 2021, 9, 7186-7193.	2.7	22

#	Article	IF	CITATIONS
73	Two New Families of Charge Transfer Solids Based on [M(mnt)2]nâ^' and the Donors BMDT-TTF and EDT-TTF: Conducting and Magnetic Properties. Journal of Solid State Chemistry, 2002, 168, 563-572.	1.4	21
74	Temperature dependence of the electrical properties of single-crystals of dithiophene-tetrathiafulvalene (DT-TTF). Synthetic Metals, 2004, 146, 265-268.	2.1	21
75	Modification of the gate electrode by self-assembled monolayers in flexible electrolyte-gated organic field effect transistors: work function <i>vs.</i> capacitance effects. RSC Advances, 2018, 8, 27509-27515.	1.7	21
76	Reversal of the Direction of Rectification Induced by Fermi Level Pinning at Molecule–Electrode Interfaces in Redox-Active Tunneling Junctions. ACS Applied Materials & Interfaces, 2020, 12, 55044-55055.	4.0	21
77	New Flexible Low-Density Metallic Materials Containing the (BEDT-TTF)2(IxBr1-x)3 Molecular Metals as Active Components. Journal of Physical Chemistry B, 2001, 105, 11089-11097.	1.2	20
78	Tetrathiafulvalene-Based Materials for Organic Field Effect Transistors. Inspection of Their Semiconductor Properties by Means of Molecular Spectroscopy and Quantum Chemistry. Journal of Physical Chemistry C, 2007, 111, 10110-10118.	1.5	20
79	A four-state capacitance molecular switch based on a redox active tetrathiafulvalene self-assembled monolayer. RSC Advances, 2017, 7, 5636-5641.	1.7	20
80	Exploiting the versatile alkyne-based chemistry for expanding the applications of a stable triphenylmethyl organic radical on surfaces. Chemical Science, 2020, 11, 516-524.	3.7	20
81	Electronic and structural characterisation of a tetrathiafulvalene compound as a potential candidate for ambipolar transport properties. CrystEngComm, 2011, 13, 6597.	1.3	19
82	Benzodicarbomethoxytetrathiafulvalene Derivatives as Soluble Organic Semiconductors. Journal of Organic Chemistry, 2011, 76, 154-163.	1.7	19
83	Mercuryâ€Mediated Organic Semiconductor Surface Doping Monitored by Electrolyteâ€Gated Fieldâ€Effect Transistors. Advanced Functional Materials, 2017, 27, 1703899.	7.8	19
84	Highly Oxidized States of Phthalocyaninato Terbium(III) Multipleâ€Decker Complexes Showing Structural Deformations, Biradical Properties and Decreases in Magnetic Anisotropy. Chemistry - A European Journal, 2020, 26, 8621-8630.	1.7	19
85	Nanoscale Mapping of the Conductivity and Interfacial Capacitance of an Electrolyteâ€Gated Organic Fieldâ€Effect Transistor under Operation. Advanced Functional Materials, 2021, 31, 2008032.	7.8	19
86	Electrical transport measurements on self-assembled organic molecular wires. Journal of Chemical Physics, 2006, 124, 154704.	1.2	18
87	Anisotropy in structural and physical properties in tetrathiafulvalene derivatives-based zone-cast layers as seen by Raman spectroscopy, UV-visible spectroscopy, and field effect measurements. Journal of Applied Physics, 2010, 108, 014504.	1.1	18
88	Role of geometry, substrate and atmosphere on performance of OFETs based on TTF derivatives. Organic Electronics, 2012, 13, 121-128.	1.4	18
89	Impact of the Ink Formulation and Coating Speed on the Polymorphism and Morphology of a Solutionâ€Sheared Thin Film of a Blended Organic Semiconductor. Advanced Materials Interfaces, 2019, 6, 1900950.	1.9	18
90	Microstructured objects produced by the supramolecular hierarchical assembly of an organic free radical gathering hydrophobic-amphiphilic characteristics. Chemical Science, 2012, 3, 1958.	3.7	17

#	Article	IF	CITATIONS
91	Electrochemical and chemical tuning of the surface wettability of tetrathiafulvalene self-assembled monolayers. Chemical Communications, 2013, 49, 8084.	2.2	17
92	Design of Perchlorotriphenylmethyl (PTM) Radicalâ€Based Compounds for Optoelectronic Applications: The Role of Orbital Delocalization. ChemPhysChem, 2018, 19, 2572-2578.	1.0	17
93	Synthesis of a vinylogue tetrathiafulvalene derivative and study of its charge transfer complex with TCNQF4. Synthetic Metals, 2019, 247, 144-150.	2.1	17
94	Charge transport through unpaired spin-containing molecules on surfaces. Journal of Materials Chemistry, 2012, 22, 13883.	6.7	16
95	Selection of the two enantiotropic polymorphs of diF-TES-ADT in solution sheared thin film transistors. Journal of Materials Chemistry C, 2020, 8, 15361-15367.	2.7	16
96	Electronic localization in an extreme 1-D conductor: the organic salt (TTDM-TTF) [Au(mnt)]. European Physical Journal B, 2002, 29, 27-33.	0.6	15
97	New Molecular Charge-Transfer Salts of TM-TTF and BMDT-TTF with Thiocyanate and Selenocyanate Complex Anions [TMTTF = Tetramethyltetrathiafulvalene; BMDT-TTF = Bis(methylenedithio)tetrathiafulvalene]. European Journal of Inorganic Chemistry, 2003, 2003, 720-725.	1.0	15
98	Intramolecular electron transfer in the photodimerisation product of a tetrathiafulvalene derivative in solution and on a surface. Chemical Science, 2013, 4, 307-310.	3.7	15
99	Donor/Acceptor Mixed Selfâ€Assembled Monolayers for Realising a Multiâ€Redox‣tate Surface. ChemPhysChem, 2016, 17, 1810-1814.	1.0	15
100	Precise Characterisation of Molecular Orientation in a Single Crystal Field-Effect Transistor Using Polarised Raman Spectroscopy. Scientific Reports, 2016, 6, 33057.	1.6	15
101	Molecular Disorder in Crystalline Thin Films of an Asymmetric BTBT Derivative. Chemistry of Materials, 2021, 33, 1455-1461.	3.2	15
102	Infrared investigation of the low-temperature structural and magnetic transitions in the spin-ladder candidate(DTâ ^{°′} TTF)2Au(mnt)2. Physical Review B, 2003, 68, .	1.1	14
103	Organic metal–organic semiconductor blended contacts in single crystal field-effect transistors. Journal of Materials Chemistry, 2012, 22, 16011.	6.7	14
104	HOMO Stabilisation in Ï€â€Extended Dibenzotetrathiafulvalene Derivatives for Their Application in Organic Fieldâ€Effect Transistors. Chemistry - A European Journal, 2014, 20, 16672-16679.	1.7	14
105	Covalent Modification of Highly Ordered Pyrolytic Graphite with a Stable Organic Free Radical by Using Diazonium Chemistry. Chemistry - A European Journal, 2017, 23, 1415-1421.	1.7	14
106	Carbon-paste nanocomposites as unconventional gate electrodes for electrolyte-gated organic field-effect transistors: electrical modulation and bio-sensing. Journal of Materials Chemistry C, 2019, 7, 14993-14998.	2.7	14
107	Biasâ€Polarityâ€Dependent Direct and Inverted Marcus Charge Transport Affecting Rectification in a Redoxâ€Active Molecular Junction. Advanced Science, 2021, 8, e2100055.	5.6	14
108	Harnessing Electron Transfer from the Perchlorotriphenylmethide Anion to Y@C ₈₂ (<i>C</i> _{2<i>v</i>}) to Engineer an Endometallofullereneâ€Based Salt. ChemPhysChem, 2013, 14, 1670-1675.	1.0	13

#	Article	IF	CITATIONS
109	Tetrathiafulvaleneâ€Based Mixedâ€Valence Acceptor–Donor–Acceptor Triads: A Joint Theoretical and Experimental Approach. Chemistry - A European Journal, 2013, 19, 16656-16664.	1.7	13
110	Resistive Switching Observation in a Gallium-Based Liquid Metal/Graphene Junction. ACS Applied Electronic Materials, 2020, 2, 3093-3099.	2.0	13
111	Double Beneficial Role of Fluorinated Fullerene Dopants on Organic Thin-Film Transistors: Structural Stability and Improved Performance. ACS Applied Materials & Interfaces, 2020, 12, 28416-28425.	4.0	13
112	New Molecular Conductors Based on ETEDT-TTF Trihalides:Â From Single Crystals to Conducting Layers of Nanocrystals. Chemistry of Materials, 2002, 14, 3295-3304.	3.2	12
113	Phase recognition by lattice phonon Raman spectra: The triclinic structure of the organic semiconductor dibenzo-tetrathiafulvalene. Chemical Physics Letters, 2012, 523, 74-77.	1.2	12
114	Solid state photodimerisation of tetrathiafulvalene derivatives bearing carboxylate and carboxylic acid substituents. CrystEngComm, 2013, 15, 9878.	1.3	12
115	Stability of radical-functionalized gold surfaces by self-assembly and on-surface chemistry. Chemical Science, 2020, 11, 9162-9172.	3.7	12
116	Evidence of intrinsic ambipolar charge transport in a high band gap organic semiconductor. Journal of Materials Chemistry, 2012, 22, 345-348.	6.7	11
117	Self-Assembly of an Organic Radical Thin Film and Its Memory Function Investigated Using a Liquid-Metal Electrode. Journal of Physical Chemistry C, 2018, 122, 17784-17791.	1.5	11
118	Solution-sheared thin films of a donor-acceptor random copolymer/polystyrene blend as active material in field-effect transistors. Materials Science in Semiconductor Processing, 2019, 93, 105-110.	1.9	11
119	Neutral Organic Radical Formation by Chemisorption on Metal Surfaces. Journal of Physical Chemistry Letters, 2020, 11, 3897-3904.	2.1	11
120	Chemical Doping of the Organic Semiconductor C8â€BTBTâ€C8 Using an Aqueous lodine Solution for Device Mobility Enhancement. Advanced Materials Technologies, 2022, 7, .	3.0	11
121	Charge transfer complexes of a benzothienobenzothiophene derivative and their implementation as active layer in solution-processed thin film organic field-effect transistors. Journal of Materials Chemistry C, 2022, 10, 7319-7328.	2.7	11
122	Changes of the Molecular Structure in Organic Thin Film Transistors during Operation. Journal of Physical Chemistry C, 2015, 119, 15912-15918.	1.5	10
123	Structural and electronic characterisation of π-extended tetrathiafulvalene derivatives as active components in field-effect transistors. CrystEngComm, 2016, 18, 6149-6152.	1.3	10
124	Direct covalent grafting of an organic radical core on gold and silver. RSC Advances, 2017, 7, 20076-20083.	1.7	10
125	Carbonâ€Rich Monolayers on ITO as Highly Sensitive Platforms for Detecting Polycyclic Aromatic Hydrocarbons in Water: The Case of Pyrene. Chemistry - A European Journal, 2017, 23, 15289-15293.	1.7	10
126	Study of carbon nanotube-rich impedimetric recognition electrode for ultra-low determination of polycyclic aromatic hydrocarbons in water. Mikrochimica Acta, 2018, 185, 255.	2.5	10

#	Article	IF	CITATIONS
127	Fluid Mixing for Lowâ€Power â€~Digital Microfluidics' Using Electroactive Molecular Monolayers. Small, 2018, 14, 1703344.	5.2	10
128	Synthesis of 0D to 3D hybrid-carbon nanomaterials carrying platinum(0) nanoparticles: Towards the electrocatalytic determination of methylparabens at ultra-trace levels. Sensors and Actuators B: Chemical, 2020, 305, 127467.	4.0	10
129	Selective Discrimination of Toxic Polycyclic Aromatic Hydrocarbons in Water by Targeting π-Stacking Interactions. ACS Applied Materials & Interfaces, 2020, 12, 26688-26693.	4.0	10
130	Influence of polymer binder on the performance of diF-TES-ADT based organic field effect transistor. CrystEngComm, 2021, 23, 1043-1051.	1.3	10
131	Organic Fieldâ€Effect Transistors Based on Ternary Blends Including a Fluorinated Polymer for Achieving Enhanced Device Stability. Advanced Materials Interfaces, 2022, 9, .	1.9	10
132	Direct micro-patterning of TTF-based organic conductors on flexible substrates. Journal of Materials Chemistry, 2006, 16, 543.	6.7	9
133	Electrochemical and magnetic properties of a surface-grafted novel endohedral metallofullerene derivative. Chemical Communications, 2013, 49, 8145.	2.2	9
134	αâ€Dithiopheneâ€ŧetrathiafulvalene – a Detailed Study of an Electronic Donor and Its Derivatives. European Journal of Inorganic Chemistry, 2013, 2013, 2440-2446.	1.0	9
135	Spray-coated contacts from an organic charge transfer complex solution for organic field-effect transistors. Organic Electronics, 2017, 48, 365-370.	1.4	9
136	Crystal alignment of surface stabilized polymorph in thioindigo films. Dyes and Pigments, 2020, 172, 107847.	2.0	9
137	A new family of conducting and magnetic charge-transfer salts from BMDT-TTF. Synthetic Metals, 2001, 120, 799-800.	2.1	8
138	Synergistic Exploitation of the Superoxide Scavenger Properties of Reduced Graphene Oxide and a Trityl Organic Radical for the Impedimetric Sensing of Xanthine. Advanced Materials Interfaces, 2018, 5, 1701072.	1.9	8
139	Influence of Intermolecular Interactions on the Formation of Tetra(carbomethoxy)â€ŧetrathiafulvalene Assemblies. ChemPhysChem, 2007, 8, 1565-1571.	1.0	7
140	A surface confined yttrium(<scp>iii</scp>) bis-phthalocyaninato complex: a colourful switch controlled by electrons. Chemical Science, 2016, 7, 4940-4944.	3.7	7
141	A redox-active radical as an effective nanoelectronic component: stability and electrochemical tunnelling spectroscopy in ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 27733-27737.	1.3	7
142	Large-Size Star-Shaped Conjugated (Fused) Triphthalocyaninehexaazatriphenylene. Organic Letters, 2016, 18, 1466-1469.	2.4	7
143	Study of the E–Z stilbene isomerisation in perchlorotriphenyl-methane (PTM) derivatives. RSC Advances, 2017, 7, 15278-15283.	1.7	7
144	EGOFET Gated by a Molecular Electronic Switch: A Singleâ€Device Memory Cell. Advanced Electronic Materials, 2019, 5, 1800875.	2.6	7

#	Article	IF	CITATIONS
145	Precursor polymorph determines the organic semiconductor structure formed upon annealing. Journal of Materials Chemistry C, 2021, 9, 10865-10874.	2.7	7
146	Interplay between Electrolyte-Gated Organic Field-Effect Transistors and Surfactants: A Surface Aggregation Tool and Protecting Semiconducting Layer. ACS Applied Materials & Interfaces, 2021, 13, 30902-30909.	4.0	7
147	Isolation of two regioisomers of a triad of C60 based on a tetrathiafulvalene derivative. Synthetic Metals, 2001, 123, 523-527.	2.1	6
148	Infrared investigation of the charge ordering pattern in the organic spin ladder candidate (DTTTF)2Cu(mnt)2. Solid State Sciences, 2008, 10, 1740-1744.	1.5	6
149	High Performance Organic Fieldâ€Effect Transistors with Solid and Aqueous Dielectric Based on a Solution Sheared Sulfurâ€Bridged Annulene Derivative. Advanced Electronic Materials, 2018, 4, 1700349.	2.6	6
150	Cyclodextrin-based superparamagnetic host vesicles as ultrasensitive nanobiocarriers for electrosensing. Nanoscale, 2020, 12, 9884-9889.	2.8	6
151	Molecular compounds based on DT-TTF and Au(cdc) 2 complex. Structural, magnetic and electrical properties. Polyhedron, 2003, 22, 2415-2422.	1.0	5
152	Improved Synthesis of the High-Mobility Organic Semiconductor DithioÂphene-Tetrathiafulvalene. Synthesis, 2007, 2007, 1621-1623.	1.2	5
153	Pyreneâ€Based Dyad and Triad Leading to a Reversible Chemical and Redox Optical and Magnetic Switch. Chemistry - A European Journal, 2015, 21, 5504-5509.	1.7	5
154	Electrochemically driven host–guest interactions on patterned donor/acceptor self-assembled monolayers. Chemical Communications, 2018, 54, 3038-3041.	2.2	5
155	Real-time threshold voltage compensation on dual-gate electrolyte-gated organic field-effect transistors. Organic Electronics, 2022, 106, 106531.	1.4	5
156	Evaluation of charge transfer degree in the bis(ethylenethio)tetrathiafulvalene salts by Raman spectroscopy. Synthetic Metals, 2006, 156, 75-80.	2.1	4
157	Extensive study of the electron donor 1,1,4,4-tetrathiabutadiene (TTB) and of its charge transfer crystal with TCNQ. Synthetic Metals, 2018, 235, 29-33.	2.1	4
158	Oligothienylenevinylene Polarons and Bipolarons Confined between Electronâ€Accepting Perchlorotriphenylmethyl Radicals. Chemistry - A European Journal, 2018, 24, 3776-3783.	1.7	4
159	Electronic Performance of Polymer Carbonâ€Paste Nanoallotropes from 0D to 3D as Novel Gate Electrodes in Waterâ€Gated Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2020, 6, 2000431.	2.6	4
160	Charge disproportionate state of BEDT-TTFβ″ – salts. European Physical Journal Special Topics, 2004, 114, 397-399.	0.2	4
161	Photoswitching activation of a ferrocenyl-stilbene analogue by its covalent grafting to gold. Physical Chemistry Chemical Physics, 2022, 24, 6185-6192.	1.3	4
162	Synthesis improvement, crystal structure and a charge-transfer complex of a sulphur dioxide-containing TTF derivative. Synthetic Metals, 2002, 128, 155-159.	2.1	3

#	Article	IF	CITATIONS
163	Robust molecular micro-capsules for encapsulating and releasing hydrophilic contents. Chemical Communications, 2013, 49, 7827.	2.2	3
164	Low activation energy field-effect transistors fabricated by bar-assisted meniscus shearing. Applied Physics Letters, 2021, 119, .	1.5	3
165	Functionalising the gate dielectric of organic field-effect transistors with self-assembled monolayers: effect of molecular electronic structure on device performance. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	3
166	Tetrathiafulvalene-C60 based dyads by Diels-Alder reaction of bis(methylene) [2H]TTF and C60. Synthetic Metals, 1999, 103, 2368.	2.1	2
167	Pressure effect on the electrical properties of the ladder compounds (DT-TTF)2[M(mnt)2], M=Au, Pt, Ni. Synthetic Metals, 2003, 133-134, 405-406.	2.1	2
168	A Methylâ€ S ubstituted Thiophene–TetraÂŧhiafulvalene Donor and Its Salts. European Journal of Inorganic Chemistry, 2015, 2015, 5003-5010.	1.0	2
169	Tetramethylbenzidine–TetrafluoroTCNQ (TMB–TCNQF ₄): A Narrow-Gap Semiconducting Salt with Room-Temperature Relaxor Ferroelectric Behavior. Journal of Physical Chemistry C, 2021, 125, 25816-25824.	1.5	2
170	High Piezoresistive Organic Film for Plastic Pressure Sensors. , 2007, , .		1
171	Flexible Film-Based Sensors Structured with a High Piezoresistive Organic Molecular Conductor as an Active Component. , 2010, , .		1
172	Restraints in low dimensional organic semiconductor devices at high current densities. Organic Electronics, 2014, 15, 211-215.	1.4	1
173	On the Sensing Mechanisms of a Hydroresistive Flexible Film Based on an Organic Molecular Metal. ACS Applied Electronic Materials, 2019, 1, 1781-1791.	2.0	1
174	Radical-ion salts based on C60-TTF fused dyads. Synthetic Metals, 1999, 102, 1488-1489.	2.1	0
175	Single-molecule magnets on a polymeric thin film as magnetic quantum bits. , 2003, 5118, 594.		Ο
176	Deposition of composite materials using a wire-bar coater for achieving processability and air-stability in Organic Field-Effect Transistors (OFETs). Proceedings of SPIE, 2015, , .	0.8	0
177	Deposición convectiva rápida a escala nanométrica de materiales compuestos activos para la fabricación de transistores orgánicos de efecto de campo. Ingenius: Revista De Ciencia Y TecnologÃa, 2021, , 9-16.	0.1	0
178	PTM Radicals for Molecular-Based Electronic Devices. Advances in Atom and Single Molecule Machines, 2013, , 71-85.	0.0	0
179	Deposición convectiva rápida a escala nanométrica de materiales compuestos activos para la fabricación de transistores orgánicos de efecto de campo. Ingenius: Revista De Ciencia Y TecnologÃa, 2021, , 9-16.	0.1	0
180	Emergent Insulator–Metal Transition with Tunable Optical and Electrical Gap in Thin Films of a Molecular Conducting Composite. ACS Applied Electronic Materials, 0, , .	2.0	0