Ana M. Azevedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/315463/publications.pdf

Version: 2024-02-01

142 papers

5,419 citations

39 h-index 95266 68 g-index

143 all docs

143 docs citations

times ranked

143

4972 citing authors

#	Article	IF	CITATIONS
1	Horseradish peroxidase: a valuable tool in biotechnology. Biotechnology Annual Review, 2003, 9, 199-247.	2.1	235
2	Aqueous two-phase systems: A viable platform in the manufacturing of biopharmaceuticals. Journal of Chromatography A, 2010, 1217, 2296-2305.	3.7	216
3	mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine, 2021, 39, 2190-2200.	3.8	214
4	Ethanol biosensors based on alcohol oxidase. Biosensors and Bioelectronics, 2005, 21, 235-247.	10.1	213
5	Chromatography-free recovery of biopharmaceuticals through aqueous two-phase processing. Trends in Biotechnology, 2009, 27, 240-247.	9.3	201
6	Partitioning of human antibodies in polyethylene glycol–sodium citrate aqueous two-phase systems. Separation and Purification Technology, 2009, 65, 14-21.	7.9	192
7	Partitioning in Aqueous Two-Phase Systems: Fundamentals, Applications and Trends. Separation and Purification Reviews, 2016, 45, 68-80.	5 . 5	192
8	Magnetic separations in biotechnology. Biotechnology Advances, 2013, 31, 1374-1385.	11.7	189
9	Application of central composite design to the optimisation of aqueous two-phase extraction of human antibodies. Journal of Chromatography A, 2007, 1141, 50-60.	3.7	182
10	Aqueous two-phase extraction as a platform in the biomanufacturing industry: Economical and environmental sustainability. Biotechnology Advances, 2011, 29, 559-567.	11.7	145
11	Optimisation of aqueous two-phase extraction of human antibodies. Journal of Biotechnology, 2007, 132, 209-217.	3 . 8	130
12	Partitioning in aqueous twoâ€phase systems: Analysis of strengths, weaknesses, opportunities and threats. Biotechnology Journal, 2015, 10, 1158-1169.	3 . 5	118
13	Purification of plasmid DNA with aqueous two phase systems of PEG 600 and sodium citrate/ammonium sulfate. Separation and Purification Technology, 2009, 65, 22-30.	7.9	108
14	Affinity partitioning of human antibodies in aqueous two-phase systems. Journal of Chromatography A, 2007, 1162, 103-113.	3.7	106
15	Application of aqueous two-phase systems to antibody purification: A multi-stage approach. Journal of Biotechnology, 2009, 139, 306-313.	3.8	97
16	Continuous purification of antibodies from cell culture supernatant with aqueous twoâ€phase systems: From concept to process. Biotechnology Journal, 2013, 8, 352-362.	3.5	91
17	Affinity-enhanced purification of human antibodies by aqueous two-phase extraction. Separation and Purification Technology, 2009, 65, 31-39.	7.9	88
18	Stability of free and immobilised peroxidase in aqueous–organic solvents mixtures. Journal of Molecular Catalysis B: Enzymatic, 2001, 15, 147-153.	1.8	78

#	Article	IF	CITATIONS
19	Detection of ochratoxin A in wine and beer by chemiluminescence-based ELISA in microfluidics with integrated photodiodes. Sensors and Actuators B: Chemical, 2013, 176, 232-240.	7.8	74
20	Integrated process for the purification of antibodies combining aqueous two-phase extraction, hydrophobic interaction chromatography and size-exclusion chromatography. Journal of Chromatography A, 2008, 1213, 154-161.	3.7	64
21	Microspot-based ELISA in microfluidics: chemiluminescence and colorimetry detection using integrated thin-film hydrogenated amorphous silicon photodiodes. Lab on A Chip, 2011, 11, 4063.	6.0	64
22	Capture and Detection of DNA Hybrids on Paper via the Anchoring of Antibodies with Fusions of Carbohydrate Binding Modules and ZZ-Domains. Analytical Chemistry, 2014, 86, 4340-4347.	6.5	61
23	Continuous aqueous two-phase extraction of human antibodies using a packed column. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 880, 148-156.	2.3	60
24	Multiplexed capillary microfluidic immunoassay with smartphone data acquisition for parallel mycotoxin detection. Biosensors and Bioelectronics, 2018, 99, 40-46.	10.1	59
25	Assay of H2O2 by HRP catalysed co-oxidation of phenol-4-sulphonic acid and 4-aminoantipyrine: characterisation and optimisation. Journal of Molecular Catalysis B: Enzymatic, 2004, 28, 129-135.	1.8	54
26	An overview of lectins purification strategies. Journal of Molecular Recognition, 2012, 25, 527-541.	2.1	54
27	Design of a microfluidic platform for monoclonal antibody extraction using an aqueous two-phase system. Journal of Chromatography A, 2012, 1249, 1-7.	3.7	54
28	Purification of human immunoglobulin G by thermoseparating aqueous two-phase systems. Journal of Chromatography A, 2008, 1195, 94-100.	3.7	53
29	Thermal and operational stabilities of Hansenula polymorpha alcohol oxidase. Journal of Molecular Catalysis B: Enzymatic, 2004, 27, 37-45.	1.8	50
30	On-chip sample preparation and analyte quantification using a microfluidic aqueous two-phase extraction coupled with an immunoassay. Lab on A Chip, 2014, 14, 4284-4294.	6.0	50
31	Integrated purification of monoclonal antibodies directly from cell culture medium with aqueous two-phase systems. Separation and Purification Technology, 2014, 132, 330-335.	7.9	47
32	Anything but Conventional Chromatography Approaches in Bioseparation. Biotechnology Journal, 2020, 15, e1900274.	3.5	47
33	Optimization and miniaturization of aqueous two phase systems for the purification of recombinant human immunodeficiency virus-like particles from a CHO cell supernatant. Separation and Purification Technology, 2015, 154, 27-35.	7.9	46
34	The application of microbeads to microfluidic systems for enhanced detection and purification of biomolecules. Methods, 2017, 116, 112-124.	3.8	45
35	Downstream processing of antibodies: Single-stage versus multi-stage aqueous two-phase extraction. Journal of Chromatography A, 2009, 1216, 8741-8749.	3.7	43
36	OPTIMIZATION OF FLAVOR ESTERS SYNTHESIS BY FUSARIUM SOLANI PISI CUTINASE. Journal of Food Biochemistry, 2012, 36, 275-284.	2.9	42

#	Article	IF	CITATIONS
37	A point-of-use microfluidic device with integrated photodetector array for immunoassay multiplexing: Detection of a panel of mycotoxins in multiple samples. Biosensors and Bioelectronics, 2017, 87, 823-831.	10.1	42
38	Operational stability of immobilised horseradish peroxidase in mini-packed bed bioreactors. Journal of Molecular Catalysis B: Enzymatic, 2004, 28, 121-128.	1.8	41
39	Downstream processing of human antibodies integrating an extraction capture step and cation exchange chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 50-58.	2.3	41
40	Multimodal chromatography: debottlenecking the downstream processing of monoclonal antibodies. Pharmaceutical Bioprocessing, 2015, 3, 263-279.	0.8	39
41	Partitioning and recovery of Canavalia brasiliensis lectin by aqueous two-phase systems using design of experiments methodology. Separation and Purification Technology, 2010, 75, 48-54.	7.9	38
42	Determination of aqueous two phase system binodal curves using a microfluidic device. Journal of Chromatography A, 2014, 1370, 115-120.	3.7	38
43	Multiplexed microfluidic fluorescence immunoassay with photodiode array signal acquisition for sub-minute and point-of-need detection of mycotoxins. Lab on A Chip, 2018, 18, 1569-1580.	6.0	37
44	Emerging technologies for the integration and intensification of downstream bioprocesses. Pharmaceutical Bioprocessing, 2013, 1, 423-440.	0.8	36
45	A novel method for human hematopoietic stem/progenitor cell isolation from umbilical cord blood based on immunoaffinity aqueous two-phase partitioning. Biotechnology Letters, 2011, 33, 2373-2377.	2.2	34
46	Modulation of alpha-synuclein toxicity in yeast using a novel microfluidic-based gradient generator. Lab on A Chip, 2014, 14, 3949-3957.	6.0	33
47	Advances, challenges and opportunities for point-of-need screening of mycotoxins in foods and feeds. Analyst, The, 2018, 143, 1015-1035.	3.5	33
48	Silica bead-based microfluidic device with integrated photodiodes for the rapid capture and detection of rolling circle amplification products in the femtomolar range. Biosensors and Bioelectronics, 2019, 128, 68-75.	10.1	33
49	Operation and performance of analytical packed-bed reactors with an immobilised alcohol oxidase. Journal of Molecular Catalysis B: Enzymatic, 2004, 28, 45-53.	1.8	32
50	Lab-on-chip systems for integrated bioanalyses. Essays in Biochemistry, 2016, 60, 121-131.	4.7	32
51	High-Throughput Nanoliter-Scale Analysis and Optimization of Multimodal Chromatography for the Capture of Monoclonal Antibodies. Analytical Chemistry, 2016, 88, 7959-7967.	6.5	32
52	Stability and stabilisation of penicillin acylase. , 1999, 74, 1110-1116.		31
53	Stimuliâ€Responsive magnetic nanoparticles for monoclonal antibody purification. Biotechnology Journal, 2013, 8, 709-717.	3.5	31
54	Sustainable strategies based on glycine–betaine analogue ionic liquids for the recovery of monoclonal antibodies from cell culture supernatants. Green Chemistry, 2019, 21, 5671-5682.	9.0	31

#	Article	IF	Citations
55	Capture of human monoclonal antibodies from a clarified cell culture supernatant by phenyl boronate chromatography. Journal of Molecular Recognition, 2010, 23, 569-576.	2.1	30
56	Magnetic aqueous two phase fishing: A hybrid process technology for antibody purification. Journal of Chromatography A, 2014, 1339, 59-64.	3.7	30
57	Potential of boronic acid functionalized magnetic particles in the adsorption of human antibodies under mammalian cell culture conditions. Journal of Chromatography A, 2011, 1218, 7821-7827.	3.7	29
58	Enhancement of lateral flow assay performance by electromagnetic relocation of reporter particles. PLoS ONE, 2018, 13, e0186782.	2.5	27
59	Phenylboronic acid as a multi-modal ligand for the capture of monoclonal antibodies: Development and optimization of a washing step. Journal of Chromatography A, 2014, 1355, 115-124.	3.7	26
60	Integration of cell harvest with affinity-enhanced purification of monoclonal antibodies using aqueous two-phase systems with a dual tag ligand. Separation and Purification Technology, 2017, 173, 129-134.	7.9	26
61	Clearance of host cell impurities from plasmid-containing lysates by boronate adsorption. Journal of Chromatography A, 2010, 1217, 2262-2266.	3.7	24
62	Fishing human monoclonal antibodies from a CHO cell supernatant with boronic acid magnetic particles. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 903, 163-170.	2.3	23
63	Miniaturization of aqueous twoâ€phase extraction for biological applications: From microâ€tubes to microchannels. Biotechnology Journal, 2016, 11, 1498-1512.	3.5	23
64	Monoclonal Antibodies Production Platforms: An Opportunity Study of a Nonâ€Proteinâ€A Chromatographic Platform Based on Process Economics. Biotechnology Journal, 2017, 12, 1700260.	3.5	23
65	Studies on the adsorption of cell impurities from plasmid-containing lysates to phenyl boronic acid chromatographic beads. Journal of Chromatography A, 2011, 1218, 8629-8637.	3.7	22
66	Boronic acid-modified magnetic materials for antibody purification. Journal of the Royal Society Interface, 2014, 11, 20130875.	3.4	22
67	An extracellular polymer at the interface of magnetic bioseparations. Journal of the Royal Society Interface, 2014, 11, 20140743.	3.4	22
68	Capillary-driven microfluidic device with integrated nanoporous microbeads for ultrarapid biosensing assays. Sensors and Actuators B: Chemical, 2018, 265, 452-458.	7.8	22
69	A regenerable microfluidic device with integrated valves and thin-film photodiodes for rapid optimization of chromatography conditions. Sensors and Actuators B: Chemical, 2018, 255, 3636-3646.	7.8	22
70	Phenylboronate chromatography selectively separates glycoproteins through the manipulation of electrostatic, charge transfer, and <i>cis</i> êdiol interactions. Biotechnology Journal, 2014, 9, 1250-1258.	3.5	21
71	A microfluidic immunoassay platform for the detection of free prostate specific antigen: a systematic and quantitative approach. Analyst, The, 2015, 140, 4423-4433.	3.5	21
72	Aqueous two-phase systems for enhancing immunoassay sensitivity: Simultaneous concentration of mycotoxins and neutralization of matrix interference. Journal of Chromatography A, 2014, 1361, 67-76.	3.7	20

#	Article	IF	CITATIONS
73	A process for supercoiled plasmid DNA purification based on multimodal chromatography. Separation and Purification Technology, 2017, 182, 94-100.	7.9	20
74	Predicting protein partition coefficients in aqueous two phase system. Journal of Chromatography A, 2016, 1470, 50-58.	3.7	19
75	Determination of partition coefficients of biomolecules in a microfluidic aqueous two phase system platform using fluorescence microscopy. Journal of Chromatography A, 2017, 1487, 242-247.	3.7	19
76	Studies on the purification of antibody fragments. Separation and Purification Technology, 2018, 195, 388-397.	7.9	19
77	Surface plasmon resonance application in prostate cancer biomarker research. Chemical Papers, 2015, 69, .	2.2	18
78	Modeling the partitioning of amino acids in aqueous two phase systems. Journal of Chromatography A, 2014, 1329, 52-60.	3.7	17
79	A multiplexed microfluidic toolbox for the rapid optimization of affinity-driven partition in aqueous two phase systems. Journal of Chromatography A, 2017, 1515, 252-259.	3.7	17
80	A simple method for point-of-need extraction, concentration and rapid multi-mycotoxin immunodetection in feeds using aqueous two-phase systems. Journal of Chromatography A, 2017, 1511, 15-24.	3.7	17
81	Development of a rapid bead-based microfluidic platform for DNA hybridization using single- and multi-mode interactions for probe immobilization. Sensors and Actuators B: Chemical, 2019, 286, 328-336.	7.8	17
82	Recent developments in microreactor technology for biocatalysis applications. Reaction Chemistry and Engineering, 2021, 6, 815-827.	3.7	17
83	Colorimetric detection of D-dimer in a paper-based immunodetection device. Analytical Biochemistry, 2017, 538, 5-12.	2.4	16
84	Aptamer-based approaches to detect nucleolin in prostate cancer. Talanta, 2021, 226, 122037.	5.5	16
85	BEHAVIOUR OF HORSERADISH PEROXIDASE IN AOT REVERSED MICELLES. Biocatalysis and Biotransformation, 2001, 19, 213-233.	2.0	15
86	Liquidâ^'Liquid Equilibrium Data for Aqueous Two-Phase Systems Composed of Ethylene Oxide Propylene Oxide Copolymers. Journal of Chemical & Engineering Data, 2011, 56, 190-194.	1.9	15
87	Magnetic anisotropy of epitaxial zinc ferrite thin films grown by pulsed laser deposition. Thin Solid Films, 2013, 527, 273-277.	1.8	15
88	A microfluidic platform for physical entrapment of yeast cells with continuous production of invertase. Journal of Chemical Technology and Biotechnology, 2017, 92, 334-341.	3.2	15
89	Microfluidic device for the point of need detection of a pathogen infection biomarker in grapes. Analyst, The, 2019, 144, 4871-4879.	3.5	15
90	Manufacturing of bacteriophages for therapeutic applications. Biotechnology Advances, 2021, 49, 107758.	11.7	15

#	Article	IF	Citations
91	Label-Free Detection of Biomolecules in Microfluidic Systems Using On-Chip UV and Impedimetric Sensors. IEEE Sensors Journal, 2019, 19, 7803-7812.	4.7	13
92	Continuous aqueous two-phase extraction: From microfluidics to integrated biomanufacturing. Fluid Phase Equilibria, 2020, 508, 112438.	2.5	13
93	Microfluidic device for multiplexed detection of fungal infection biomarkers in grape cultivars. Analyst, The, 2020, 145, 7973-7984.	3.5	13
94	Partitioning of <i>Canavalia brasiliensis</i> li>Lectin in Polyethylene Glycol â€" Sodium Citrate Aqueous Two-Phase Systems. Separation Science and Technology, 2010, 45, 2180-2186.	2.5	12
95	Polishing of monoclonal antibodies streams through convective flow devices. Separation and Purification Technology, 2014, 132, 593-600.	7.9	12
96	Phenylboronic acid chromatography provides a rapid, reproducible and easy scalable multimodal process for the capture of monoclonal antibodies. Separation and Purification Technology, 2016, 160, 43-50.	7.9	12
97	Development of phage biopanning strategies to identify affinity peptide ligands for kappa light chain Fab fragments. Biotechnology Progress, 2019, 35, e2884.	2.6	12
98	A biomolecular recognition approach for the functionalization of cellulose with gold nanoparticles. Journal of Molecular Recognition, 2017, 30, e2634.	2.1	11
99	Optical biosensing in microfluidics using nanoporous microbeads and amorphous silicon thin-film photodiodes: quantitative analysis of molecular recognition and signal transduction. Journal of Micromechanics and Microengineering, 2018, 28, 094004.	2.6	11
100	Multimodal chromatography of supercoiled minicircles: A closer look into DNA-ligand interactions. Separation and Purification Technology, 2019, 212, 161-170.	7.9	11
101	Separation of plasmid DNA topoisomers by multimodal chromatography. Analytical Biochemistry, 2016, 503, 68-70.	2.4	10
102	M13 bacteriophage purification using poly(ionic liquids) as alternative separation matrices. Journal of Chromatography A, 2018, 1532, 246-250.	3.7	10
103	Exploring the use of heparin as a first capture step in the purification of monoclonal antibodies from cell culture supernatants. Biochemical Engineering Journal, 2015, 104, 27-33.	3.6	9
104	Kinetic and Stability Studies of Penicillin Acylase in Reversed Micelles. Biocatalysis and Biotransformation, 2000, 17, 401-415.	2.0	8
105	Optimizing the Performance of Chromatographic Separations Using Microfluidics: Multiplexed and Quantitative Screening of Ligands and Target Molecules. Biotechnology Journal, 2019, 14, e1800593.	3.5	7
106	Minimizing the Influence of Fluorescent Tags on IgG Partition in PEG–Salt Aqueous Twoâ€Phase Systems for Rapid Screening Applications. Biotechnology Journal, 2019, 14, 1800640.	3.5	7
107	Microfluidic platform for rapid screening of bacterial cell lysis. Journal of Chromatography A, 2020, 1610, 460539.	3.7	7
108	A Versatile and Fully Integrated Hand-Held Device for Microfluidic-Based Biosensing: A Case Study of Plant Health Biomarkers. IEEE Sensors Journal, 2020, 20, 14007-14015.	4.7	7

7

#	Article	IF	CITATIONS
109	Microchromatography integrated with impedance sensor for bioprocess optimization: Experimental and numerical study of column efficiency for evaluation of scalability. Journal of Chromatography A, 2022, 1661, 462678.	3.7	7
110	Pre-miRNA-149 G-quadruplex as a molecular agent to capture nucleolin. European Journal of Pharmaceutical Sciences, 2022, 169, 106093.	4.0	7
111	Monolithically integrated optical interference and absorption filters on thin film amorphous silicon photosensors for biological detection. Sensors and Actuators B: Chemical, 2022, 356, 131330.	7.8	7
112	Modeling of counter current monoclonal antibody extraction using aqueous two-phase systems. Computer Aided Chemical Engineering, 2007, , 935-940.	0.5	6
113	Validation and scaleâ€up of plasmid <scp>DNA</scp> purification by phenylâ€boronic acid chromatography. Journal of Separation Science, 2012, 35, 3190-3196.	2.5	6
114	Student Collaboration in a Series of Integrated Experiments To Study Enzyme Reactor Modeling with Immobilized Cell-Based Invertase. Journal of Chemical Education, 2015, 92, 1238-1243.	2.3	6
115	Point-of-use Ultrafast Single-step Detection of Food Contaminants: A Novel Microfluidic Fluorescence-based Immunoassay with Integrated Photodetection. Procedia Engineering, 2016, 168, 329-332.	1.2	6
116	Thermodynamics of the adsorption of monoclonal antibodies in phenylboronate chromatography: Affinity versus multimodal interactions. Journal of Chromatography A, 2018, 1569, 118-127.	3.7	6
117	Purification of monoclonal antibodies in a stirred cell with polyethyleneimineâ€modified polyethersulfone ultrafiltration membrane. Journal of Chemical Technology and Biotechnology, 2019, 94, 3548-3558.	3.2	6
118	Extraction of Human IgG in Thermo-Responsive Aqueous Two-Phase Systems: Assessment of Structural Stability by Circular Dichroism. Separation Science and Technology, 2010, 45, 2171-2179.	2.5	5
119	LYTAGâ€driven purification strategies for monoclonal antibodies using quaternary amine ligands as affinity matrices. Journal of Chemical Technology and Biotechnology, 2018, 93, 1966-1974.	3.2	5
120	Regenerable bead-based microfluidic device with integrated thin-film photodiodes for real-time monitoring of DNA detection. Sensors and Actuators B: Chemical, 2022, 359, 131607.	7.8	5
121	A Systematic Approach for Developing 3D High-Quality PDMS Microfluidic Chips Based on Micromilling Technology. Micromachines, 2022, 13, 6.	2.9	5
122	Microfluidics as a high-throughput solution for chromatographic process development – The complexity of multimodal chromatography used as a proof of concept. Journal of Chromatography A, 2021, 1658, 462618.	3.7	4
123	Accurate and rapid microfluidic ELISA to monitor Infliximab titers in patients with inflammatory bowel diseases. Analyst, The, 2022, 147, 480-488.	3.5	4
124	Fundamentals of Biological Separation Processes. , 2017, , 187-237.		3
125	Purification of human antibodies from animal cell cultures using gum arabic coated magnetic particles. Journal of Chemical Technology and Biotechnology, 2015, 90, 838-846.	3.2	2
126	Integration of Photosensors in a Nano-liter Scale Chromatography Column for the Online Monitoring of Adsorption/Desorption Kinetics of a Fluorophore-labeled Monoclonal Antibody. Procedia Engineering, 2016, 168, 1426-1429.	1.2	2

#	Article	IF	CITATIONS
127	Screening polymeric ionic liquids for chromatography-based purification of bacteriophage M13. Separation and Purification Technology, 2021, 257, 117906.	7.9	2
128	Advances in biopartitioning and purification. Separation and Purification Technology, 2009, 65, 1-2.	7.9	1
129	Novel strategies for the purification of monoclonal antibodies. , 2011, , .		1
130	New platforms for the downstream processing of biopharmaceuticals. , 2011, , .		1
131	Development of a Point-of-Care Platform for Plant Health Assessment: A Microfluidic Approach. Proceedings (mdpi), 2018, 2, 819.	0.2	1
132	Biochemical Engineering Science—Sustainable Processes and Economies. Biotechnology Journal, 2019, 14, e1900276.	3.5	1
133	A Chronology of the Development of Aqueous Two-Phase Systems as a Viable Liquid-Liquid Extraction for Biological Products. , $2019, \ldots$		1
134	Rolling Circle Amplification in Bead-Based Microfluidic Device with Integrated Photodiode for Fluorescence Signal Transduction. , 2021, , .		1
135	Purification of Plasmid DNA by Multimodal Chromatography. Methods in Molecular Biology, 2021, 2197, 193-205.	0.9	1
136	Primary Purification of Plasmid DNA Using Differential Isopropanol Precipitation. Methods in Molecular Biology, 2021, 2197, 151-165.	0.9	1
137	Enzymatic Biosensors with Integrated Thin Film a-Si:H Photodiodes. Materials Research Society Symposia Proceedings, 2009, $1153,1.$	0.1	0
138	Extraction of Zera& #x00AE; fusion proteins in aqueous two-phase systems. , 2015, , .		0
139	Multiplexed microfluidic platform coupled with photodetector array for point-of-need and sub-minute detection of food contaminants. , 2018, , .		O
140	Quantitative analysis of optical transduction in microfluidic biosensing platforms: Nanoporous microbeads coupled with thin-film photodiodes. , $2018, , .$		0
141	Mobileâ€Phase Modulators as Salt Tolerance Enhancers in Phenylboronate Chromatography: Thermodynamic Evaluation of the Mechanisms Underlying the Adsorption of Monoclonal Antibodies. Biotechnology Journal, 2019, 14, e1800586.	3.5	0
142	A Portable Microfluidic System for the Detection of Health Biomarkers in Grapes at the Point of Need. , 2019, , .		0