
Ronnie de Jonge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/31546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conserved Fungal LysM Effector Ecp6 Prevents Chitin-Triggered Immunity in Plants. Science, 2010, 329, 953-955.	12.6	696
2	MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5213-E5222.	7.1	608
3	Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME Journal, 2018, 12, 1496-1507.	9.8	603
4	Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5110-5115.	7.1	491
5	Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens. PLoS Pathogens, 2011, 7, e1002137.	4.7	477
6	The Soil-Borne Legacy. Cell, 2018, 172, 1178-1180.	28.9	366
7	Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Research, 2013, 23, 1271-1282.	5.5	338
8	The novel <i>Cladosporium fulvum</i> lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Molecular Microbiology, 2008, 69, 119-136.	2.5	275
9	Fungal LysM effectors: extinguishers of host immunity?. Trends in Microbiology, 2009, 17, 151-157.	7.7	243
10	The Age of Coumarins in Plant–Microbe Interactions. Plant and Cell Physiology, 2019, 60, 1405-1419.	3.1	241
11	How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Current Opinion in Plant Biology, 2011, 14, 400-406.	7.1	211
12	RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. Journal of Experimental Botany, 2009, 60, 591-602.	4.8	189
13	The Soil-Borne Supremacy. Trends in Plant Science, 2016, 21, 171-173.	8.8	159
14	<i>Verticillium dahliae</i> LysM effectors differentially contribute to virulence on plant hosts. Molecular Plant Pathology, 2017, 18, 596-608.	4.2	122
15	Microbial small molecules – weapons of plant subversion. Natural Product Reports, 2018, 35, 410-433.	10.3	105
16	The Soil-Borne Identity and Microbiome-Assisted Agriculture: Looking Back to the Future. Molecular Plant, 2020, 13, 1394-1401.	8.3	80
17	Endoplasmic Reticulum-Quality Control Chaperones Facilitate the Biogenesis of Cf Receptor-Like Proteins Involved in Pathogen Resistance of Tomato Â. Plant Physiology, 2012, 159, 1819-1833.	4.8	63
18	Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus <i>Colletotrichum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5459-E5466.	7.1	61

Ronnie de Jonge

#	Article	IF	CITATIONS
19	Pseudomonas simiae WCS417: star track of a model beneficial rhizobacterium. Plant and Soil, 2021, 461, 245-263.	3.7	53
20	Rapid evolution of bacterial mutualism in the plant rhizosphere. Nature Communications, 2021, 12, 3829.	12.8	51
21	Optimized Agroinfiltration and Virus-Induced Gene Silencing to Study Ve1-Mediated <i>Verticillium</i> Resistance in Tobacco. Molecular Plant-Microbe Interactions, 2013, 26, 182-190.	2.6	50
22	Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant <i>Arabidopsis thaliana</i> switches from initial detection to antagonism. New Phytologist, 2019, 223, 867-881.	7.3	49
23	Comparative phenomics and targeted use of genomics reveals variation in carbon and nitrogen assimilation among different Brettanomyces bruxellensis strains. Applied Microbiology and Biotechnology, 2015, 99, 9123-9134.	3.6	47
24	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. PLoS Pathogens, 2020, 16, e1008652.	4.7	44
25	The transcriptome ofVerticillium dahliae-infectedNicotiana benthamianadetermined by deep RNA sequencing. Plant Signaling and Behavior, 2012, 7, 1065-1069.	2.4	42
26	<i>Cercospora beticola</i> : The intoxicating lifestyle of the leaf spot pathogen of sugar beet. Molecular Plant Pathology, 2020, 21, 1020-1041.	4.2	39
27	Fermentation assays reveal differences in sugar and (off-) flavor metabolism across different <i>Brettanomyces bruxellensis</i> strains. FEMS Yeast Research, 2017, 17, .	2.3	34
28	RNA-sequencing of Cercospora beticola DMI-sensitive and -resistant isolates after treatment with tetraconazole identifies common and contrasting pathway induction. Fungal Genetics and Biology, 2016, 92, 1-13.	2.1	30
29	Experimental-Evolution-Driven Identification of <i>Arabidopsis</i> Rhizosphere Competence Genes in Pseudomonas protegens. MBio, 2021, 12, e0092721.	4.1	19
30	Complete mitochondrial genome of the Verticillium-wilt causing plant pathogen Verticillium nonalfalfae. PLoS ONE, 2016, 11, e0148525.	2.5	19
31	Gene cluster conservation identifies melanin and perylenequinone biosynthesis pathways in multiple plant pathogenic fungi. Environmental Microbiology, 2019, 21, 913-927.	3.8	16
32	The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution. Fungal Genetics and Biology, 2014, 62, 43-54.	2.1	15
33	Fungal social influencers: secondary metabolites as a platform for shaping the plantâ€associated community. Plant Journal, 2021, 108, 632-645.	5.7	14
34	Identification and characterization of <i>Cercospora beticola</i> necrosisâ€inducing effector CbNip1. Molecular Plant Pathology, 2021, 22, 301-316.	4.2	14
35	Genome Sequence of a Lethal Strain of Xylem-Invading <i>Verticillium nonalfalfae</i> . Genome Announcements, 2018, 6, .	0.8	13
36	Transcriptome Signatures in Pseudomonas simiae WCS417 Shed Light on Role of Root-Secreted Coumarins in Arabidopsis-Mutualist Communication. Microorganisms, 2021, 9, 575.	3.6	12

#	Article	IF	CITATIONS
37	In Silico Identification and Characterization of Effector Catalogs. Methods in Molecular Biology, 2012, 835, 415-425.	0.9	11
38	Genome comparisons suggest an association between Ceratocystis host adaptations and effector clusters in unique transposable element families. Fungal Genetics and Biology, 2020, 143, 103433.	2.1	9
39	Sexual reproduction contributes to the evolution of resistanceâ€breaking isolates of the spinach pathogen <i>Peronospora effusa</i> . Environmental Microbiology, 2022, 24, 1622-1637.	3.8	8
40	A 20â€kb lineageâ€specific genomic region tames virulence in pathogenic amphidiploid Verticillium longisporum. Molecular Plant Pathology, 2021, 22, 939-953.	4.2	6
41	Genetic characterization of T-DNA insertions in the genome of the Arabidopsis thaliana sumo1/2 knock-down line. Plant Signaling and Behavior, 2017, 12, e1293216.	2.4	4

42 Seedborne <i>Cercospora beticola </i>Can Initiate Cercospora Leaf Spot from Sugar Beet (<i>Beta) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

43	Rapid Evolution of Plant-Bacterium Mutualism in the Rhizosphere. SSRN Electronic Journal, 0, , .	0.4	3
44	Understanding plant–microorganism interactions to envision a future of sustainable agriculture. Environmental Microbiology, 2021, 23, 1809-1811.	3.8	2
45	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
46	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
47	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
48	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
49	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
50	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0