
Alan S Kolok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3154591/publications.pdf Version: 2024-02-01

ALAN SKOLOK

#	Article	IF	CITATIONS
1	A potential pesticides exposure index (PPEI) for developing countries: Applied in a transboundary basin. Integrated Environmental Assessment and Management, 2022, 18, 187-197.	2.9	4
2	Geospatial Distribution of Ageâ€Adjusted Incidence of the Three Major Types of Pediatric Cancers and Waterborne Agrichemicals in Nebraska. GeoHealth, 2022, 6, e2021GH000419.	4.0	4
3	Assessment of Pediatric Cancer and Its Relationship to Environmental Contaminants: An Ecological Study in Idaho. GeoHealth, 2022, 6, e2021GH000548.	4.0	5
4	Salinity gradients exacerbate the genotoxicity and bioaccumulation of silver nanoparticles in fingerling Persian sturgeon (Acipenser persicus). Regional Studies in Marine Science, 2022, 52, 102264.	0.7	8
5	Investigation of Relationships Between the Geospatial Distribution of Cancer Incidence and Estimated Pesticide Use in the U.S. West. GeoHealth, 2022, 6, .	4.0	9
6	Assessing the Accuracy of Nitrate Concentration Data for Water Quality Monitoring Using Visual and Cell Phone Quantification Methods. Citizen Science: Theory and Practice, 2021, 6, .	1.2	1
7	Investigation of relationships between fecal contamination, cattle grazing, human recreation, and microbial source tracking markers in a mixed-land-use rangeland watershed. Water Research, 2021, 194, 116921.	11.3	11
8	Association between Aqueous Atrazine and Pediatric Cancer in Nebraska. Water (Switzerland), 2021, 13, 2727.	2.7	4
9	Assessment of Gene Expression Biomarkers in the Chilean Pencil Catfish, Trichomycterus areolatus, from the Choapa River Basin, Coquimbo Chile. Archives of Environmental Contamination and Toxicology, 2020, 78, 137-148.	4.1	4
10	Salinity modulates biochemical and histopathological changes caused by silver nanoparticles in juvenile Persian sturgeon (Acipenser persicus). Environmental Science and Pollution Research, 2020, 27, 10658-10671.	5.3	13
11	Pesticide contamination drives adaptive genetic variation in the endemic mayfly Andesiops torrens within a semi-arid agricultural watershed of Chile. Environmental Pollution, 2019, 255, 113099.	7.5	13
12	Assessing the Accuracy of Citizen Scientist Reported Measurements for Agrichemical Contaminants. Environmental Science & Technology, 2019, 53, 5633-5640.	10.0	14
13	Evaluating Citizen Scientists' User Experience and Engagement Using a Mobile Watershed Data Management App. Lecture Notes in Computer Science, 2019, , 541-554.	1.3	0
14	Comparing the effects of atrazine and an environmentally relevant mixture on estrogenâ€responsive gene expression in the northern leopard frog and the fathead minnow. Environmental Toxicology and Chemistry, 2018, 37, 1182-1188.	4.3	4
15	Response and recovery of fathead minnows (Pimephales promelas) following early life exposure to water and sediment found within agricultural runoff from the Elkhorn River, Nebraska, USA. Science of the Total Environment, 2018, 618, 1371-1381.	8.0	13
16	Estrogenic effects following larval exposure to the putative anti-estrogen, fulvestrant, in the fathead minnow (Pimephales promelas). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2018, 204, 26-35.	2.6	6
17	Using Watershed Boundaries to Map Adverse Health Outcomes: Examples From Nebraska, USA. Environmental Health Insights, 2018, 12, 117863021775190.	1.7	11
18	The Fate of Synthetic and Endogenous Hormones Used in the US Beef and Dairy Industries and the Potential for Human Exposure. Current Environmental Health Reports, 2018, 5, 225-232.	6.7	18

Alan S Kolok

#	Article	IF	CITATIONS
19	Compensatory response of fathead minnow larvae following a pulsed in-situ exposure to a seasonal agricultural runoff event. Science of the Total Environment, 2017, 603-604, 817-826.	8.0	10
20	De novo Assembly and Analysis of the Chilean Pencil Catfish Trichomycterus areolatus Transcriptome. Journal of Genomics, 2016, 4, 29-41.	0.9	7
21	Citizenâ€based scientific data collection: Fact or fiction?. Integrated Environmental Assessment and Management, 2016, 12, 400-402.	2.9	2
22	Biological Impacts in Fathead Minnow Larvae Following a 7-Day Exposure to Agricultural Runoff: A Microcosm Study. Bulletin of Environmental Contamination and Toxicology, 2016, 96, 432-437.	2.7	3
23	Bioavailability and Fate of Sediment-Associated Progesterone in Aquatic Systems. Environmental Science & Technology, 2016, 50, 4027-4036.	10.0	25
24	Onâ€site, serial exposure of female fathead minnows to the Elkhorn River, Nebraska, USA, spring agrichemical pulse. Environmental Toxicology and Chemistry, 2015, 34, 1354-1361.	4.3	12
25	Impact of Sediment on Agrichemical Fate and Bioavailability to Adult Female Fathead Minnows: A Field Study. Environmental Science & Technology, 2015, 49, 9037-9047.	10.0	20
26	<i>De novo</i> Assembly and Analysis of the Northern Leopard Frog <i>Rana pipiens</i> Transcriptome. Journal of Genomics, 2014, 2, 141-149.	0.9	13
27	Bioavailability and fate of sediment-associated trenbolone and estradiol in aquatic systems. Science of the Total Environment, 2014, 496, 576-584.	8.0	19
28	The Hourglass: A Conceptual Framework for the Transport of Biologically Active Compounds from Agricultural Landscapes. Journal of the American Water Resources Association, 2014, 50, 266-274.	2.4	20
29	Featured Collection Introduction: Contaminants of Emerging Concern II. Journal of the American Water Resources Association, 2014, 50, 261-265.	2.4	5
30	Sandy sediment and the bioavailability of 17β-trenbolone to adult female fathead minnows. Aquatic Toxicology, 2014, 148, 48-54.	4.0	10
31	The spring runoff in nebraska's (USA) Elkhorn River watershed and its impact on two sentinel organisms. Environmental Toxicology and Chemistry, 2013, 32, 1544-1551.	4.3	26
32	The mini mobile environmental monitoring unit: a novel bio-assessment tool. Journal of Environmental Monitoring, 2012, 14, 202-208.	2.1	12
33	Methylmercury Concentrations in Six Fish Species from Two Colombian Rivers. Bulletin of Environmental Contamination and Toxicology, 2012, 88, 65-68.	2.7	17
34	Environmental Scientists, Biologically Active Compounds, and Sustainability: The Vital Role for Small-Scale Scienceâ€. Environmental Science & Technology, 2011, 45, 39-44.	10.0	8
35	Empowering Citizen Scientists: The Strength of Many in Monitoring Biologically Active Environmental Contaminants. BioScience, 2011, 61, 626-630.	4.9	29
36	The anti-estrogenic activity of sediments from agriculturally intense watersheds: Assessment using in vivo and in vitro assays. Aquatic Toxicology, 2011, 105, 189-198.	4.0	40

Alan S Kolok

#	Article	IF	CITATIONS
37	Quantitative evaluation of laboratory uptake rates for pesticides, pharmaceuticals, and steroid hormones using POCIS. Environmental Toxicology and Chemistry, 2011, 30, 1412-1420.	4.3	77
38	Occurrence and endocrine effects of agrichemicals in a small Nebraska, USA, watershed. Environmental Toxicology and Chemistry, 2011, 30, 2253-2260.	4.3	19
39	Reductions in hepatic vitellogenin and estrogen receptor alpha expression by sediments from an agriculturally impacted waterway. Aquatic Toxicology, 2010, 96, 103-108.	4.0	33
40	The Watershed as a Conceptual Framework for the Study of Environmental and Human Health. Environmental Health Insights, 2009, 3, EHI.S1925.	1.7	21
41	Estrogenic Compounds Downstream From Three Small Cities in Eastern Nebraska: Occurrence and Biological Effect ¹ . Journal of the American Water Resources Association, 2009, 45, 14-21.	2.4	31
42	AGRICHEMICALS IN NEBRASKA, USA, WATERSHEDS: OCCURRENCE AND ENDOCRINE EFFECTS. Environmental Toxicology and Chemistry, 2009, 28, 2443.	4.3	41
43	The Environmental Impact of Growth-Promoting Compounds Employed by the United States Beef Cattle Industry: History, Current Knowledge, and Future Directions. Reviews of Environmental Contamination and Toxicology, 2008, 195, 1-30.	1.3	31
44	Occurrence and biological effect of exogenous steroids in the Elkhorn River, Nebraska, USA. Science of the Total Environment, 2007, 388, 104-115.	8.0	95
45	Do copper tolerant fathead minnows produce copper tolerant adult offspring?. Aquatic Toxicology, 2005, 72, 231-238.	4.0	3
46	Androgenic and estrogenic activity in water bodies receiving cattle feedlot effluent in Eastern Nebraska, USA Environmental Health Perspectives, 2004, 112, 346-352.	6.0	254
47	Endocrine-disrupting effects of cattle feedlot effluent on an aquatic sentinel species, the fathead minnow Environmental Health Perspectives, 2004, 112, 353-358.	6.0	309
48	COPPER TOLERANCE IN FATHEAD MINNOWS: I. THE ROLE OF GENETIC AND NONGENETIC FACTORS. Environmental Toxicology and Chemistry, 2004, 23, 200.	4.3	11
49	COPPER TOLERANCE IN FATHEAD MINNOWS: II. MATERNAL TRANSFER. Environmental Toxicology and Chemistry, 2004, 23, 208.	4.3	35
50	The physiology of copper tolerance in fathead minnows: Insight from an intraspecific, correlative analysis. Environmental Toxicology and Chemistry, 2002, 21, 1730-1735.	4.3	19
51	THE PHYSIOLOGY OF COPPER TOLERANCE IN FATHEAD MINNOWS: INSIGHT FROM AN INTRASPECIFIC, CORRELATIVE ANALYSIS. Environmental Toxicology and Chemistry, 2002, 21, 1730.	4.3	2
52	The physiology of copper tolerance in fathead minnows: insight from an intraspecific, correlative analysis. Environmental Toxicology and Chemistry, 2002, 21, 1730-5.	4.3	5
53	Sublethal identification of susceptible individuals: using swim performance to identify susceptible fish while keeping them alive. Ecotoxicology, 2001, 10, 205-209.	2.4	9