Rahmat Sadeghi

List of Publications by Citations

Source: https://exaly.com/author-pdf/31542/rahmat-sadeghi-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

146 papers

3,040 citations

30 h-index

45 g-index

148 ext. papers

3,370 ext. citations

3.2 avg, IF

5.93 L-index

#	Paper	IF	Citations
146	Liquid l iquid equilibria of aqueous two-phase systems containing polyethylene glycol and sodium dihydrogen phosphate or disodium hydrogen phosphate. <i>Fluid Phase Equilibria</i> , 2001 , 181, 95-112	2.5	112
145	Liquid II quid equilibria of an aqueous two-phase system containing polyethylene glycol and sodium citrate: experiment and correlation. <i>Fluid Phase Equilibria</i> , 2004 , 219, 149-155	2.5	110
144	Salting-in and salting-out of water-soluble polymers in aqueous salt solutions. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 5234-41	3.4	109
143	Effect of alkyl chain length and temperature on the thermodynamic properties of ionic liquids 1-alkyl-3-methylimidazolium bromide in aqueous and non-aqueous solutions at different temperatures. <i>Journal of Chemical Thermodynamics</i> , 2009 , 41, 273-289	2.9	109
142	Measurement and correlation of liquid[]quid equilibria of the aqueous two-phase system polyvinylpyrrolidoneBodium dihydrogen phosphate. <i>Fluid Phase Equilibria</i> , 2002 , 203, 177-191	2.5	104
141	Density, speed of sound, and electrical conductance of ionic liquid 1-hexyl-3-methyl-imidazolium bromide in water at different temperatures. <i>Journal of Chemical Thermodynamics</i> , 2008 , 40, 852-859	2.9	90
140	Thermodynamics of aqueous solutions of polyvinylpyrrolidone. <i>Journal of Chemical Thermodynamics</i> , 2004 , 36, 665-670	2.9	81
139	Thermodynamics of the ternary systems: (water + glycine, l-alanine and l-serine + di-ammonium hydrogen citrate) from volumetric, compressibility, and (vapour + liquid) equilibria measurements. <i>Journal of Chemical Thermodynamics</i> , 2011 , 43, 200-215	2.9	67
138	Apparent Molar Volume and Isentropic Compressibility of Trisodium Citrate in Water and in Aqueous Solutions of Polyvinylpyrrolidone at T = (283.15 to 308.15) K. <i>Journal of Chemical & Engineering Data</i> , 2007 , 52, 1037-1044	2.8	56
137	Vapor Liquid Equilibria of Aqueous Polymer Solutions from Vapor-Pressure Osmometry and Isopiestic Measurements. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 789-799	2.8	51
136	The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide. <i>Journal of Chemical Thermodynamics</i> , 2010 , 42, 441-453	2.9	51
135	Ionic association and solvation of the ionic liquid 1-hexyl-3-methylimidazolium chloride in molecular solvents revealed by vapor pressure osmometry, conductometry, volumetry, and acoustic measurements. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 13227-40	3.4	49
134	Toward an understanding of the salting-out effects in aqueous ionic liquid solutions: vapor-liquid equilibria, volumetric, compressibility, and conductivity behavior. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 16528-41	3.4	48
133	The salting-out effect and phase separation in aqueous solutions of sodium phosphate salts and poly(propylene glycol). <i>Fluid Phase Equilibria</i> , 2009 , 280, 68-75	2.5	47
132	Volumetric, Compressibility, and Viscometric Measurements of Binary Mixtures of Poly(vinylpyrrolidone) + Water, + Methanol, + Ethanol, + Acetonitrile, + 1-Propanol, + 2-Propanol, and + 1-Butanol. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 240-250	2.8	44
131	A modified segment-based nonrandom two-liquid model for the calculation of vaporliquid equilibrium of aqueous polymerBalt solutions. <i>Chemical Engineering Science</i> , 2006 , 61, 7786-7794	4.4	43
130	Apparent molar volumes and isentropic compressibilities of transfer of l-alanine from water to aqueous potassium di-hydrogen citrate and tri-potassium citrate at T = (283.15 to 308.15) K. <i>Journal of Molecular Liquids</i> , 2008 , 141, 62-68	6	41

(2004-2009)

129	Wolumetric and Isentropic Compressibility Behavior of Ionic Liquid, 1-Propyl-3-Methylimidazolium Bromide in Acetonitrile, Dimethylformamide, and Dimethylsulfoxide at T = (288.15 to 308.15) K. <i>International Journal of Thermophysics</i> , 2009 , 30, 1491-1509	2.1	39
128	Effect of temperature on the phase equilibrium of aqueous two-phase systems containing polyvinylpyrrolidone and disodium hydrogen phosphate or trisodium phosphate. <i>Fluid Phase Equilibria</i> , 2005 , 238, 129-135	2.5	39
127	Liquid Diquid Equilibria for Aliphatic Alcohols + Dipotassium Oxalate + Water. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 4586-4591	2.8	38
126	Isopiestic investigations of the interactions of water-soluble polymers with imidazolium-based ionic liquids in aqueous solutions. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 7710-7	3.4	37
125	Volumetric and ultrasonic studies of the system (water+polypropylene glycol 400) at temperatures from (283.15 to 313.15) K. <i>Journal of Chemical Thermodynamics</i> , 2004 , 36, 871-875	2.9	36
124	Thermodynamic representation of phase equilibrium behavior of aqueous solutions of amino acids by the modified Wilson model. <i>Fluid Phase Equilibria</i> , 2007 , 260, 266-274	2.5	35
123	Extension of the Wilson model to multicomponent polymer solutions: applications to polymer polymer aqueous two-phase systems. <i>Journal of Chemical Thermodynamics</i> , 2005 , 37, 55-60	2.9	35
122	Phase Diagram Data for Several PPG + Salt Aqueous Biphasic Systems at 25 °C. <i>Journal of Chemical & Engineering Data</i> , 2005 , 50, 947-950	2.8	34
121	Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures. <i>Journal of Chemical Thermodynamics</i> , 2008 , 40, 1364-1377	2.9	33
120	Measurement and correlation of phase equilibria for several PVP+salt aqueous two-phase systems at 303.15K. <i>Fluid Phase Equilibria</i> , 2005 , 237, 40-47	2.5	32
119	Phase equilibrium in aqueous two-phase systems containing poly(vinylpyrrolidone) and sodium citrate at different temperatures Experimental and modeling. <i>Thermochimica Acta</i> , 2006 , 451, 163-167	2.9	31
118	A comparison study between sodium dodecyl sulfate and sodium dodecyl sulfonate with respect to the thermodynamic properties, micellization, and interaction with poly(ethylene glycol) in aqueous solutions. <i>Journal of Chemical Thermodynamics</i> , 2011 , 43, 1361-1370	2.9	30
117	Vapor l iquid equilibria of binary tri-potassium citrate+water and ternary polypropylene oxide 400+tri-potassium citrate+water systems from isopiestic measurements over a range of temperatures. <i>Fluid Phase Equilibria</i> , 2007 , 255, 46-54	2.5	30
116	A modified Wilson model for the calculation of vapour+liquid equilibrium of aqueous polymer+salt solutions. <i>Journal of Chemical Thermodynamics</i> , 2005 , 37, 323-329	2.9	30
115	Water activities of ternary mixtures of poly(ethylene glycol), NaCl and water over the temperature range of 293.15K to 313.15K. <i>Journal of Chemical Thermodynamics</i> , 2006 , 38, 1335-1343	2.9	29
114	Thermodynamics of Phase Equilibria of Aqueous Poly(ethylene glycol) + Sodium Tungstate Two-Phase Systems. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 74-79	2.8	28
113	Aqueous two-phase systems of poly(vinylpyrrolidone) and potassium citrate at different temperatures Experimental results and modeling of liquid II quid equilibrium data. <i>Fluid Phase Equilibria</i> , 2006 , 246, 89-95	2.5	28
112	Phase Behavior of Aqueous Two-Phase PEG + NaOH System at Different Temperatures. <i>Journal of Chemical & Chemic</i>	2.8	28

111	Investigation of amino acid-polymer aqueous biphasic systems. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 10285-96	3.4	27
110	Salt-effects in aqueous surface-active ionic liquid 1-dodecyl-3-methylimidazolium bromide solutions: Volumetric and compressibility property changes and critical aggregation concentration shifts. <i>Journal of Chemical Thermodynamics</i> , 2014 , 76, 29-44	2.9	27
109	Volumetric Properties of Potassium Dihydrogen Citrate and Tripotassium Citrate in Water and in Aqueous Solutions of Alanine at T = (283.15 to 308.15) K. <i>Journal of Chemical & </i>	2.8	27
108	Thermodynamic properties of aqueous polypropylene oxide 400 solutions from isopiestic measurements over a range of temperatures. <i>Fluid Phase Equilibria</i> , 2006 , 249, 165-172	2.5	27
107	Partitioning of l-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts. <i>Journal of Chemical Thermodynamics</i> , 2011 , 43, 1525-1529	2.9	26
106	Volumetric, isentropic compressibility and electrical conductivity of solutions of tri-sodium phosphate in 1-propanol + water mixed-solvent media over the temperature range of 283.15B03.15 K. <i>Fluid Phase Equilibria</i> , 2008 , 265, 173-183	2.5	26
105	New local composition model for electrolyte solutions. Fluid Phase Equilibria, 2005, 231, 53-60	2.5	26
104	Extension of the NRTL and NRF models to multicomponent polymer solutions: Applications to polymer polymer aqueous two-phase systems. <i>Fluid Phase Equilibria</i> , 2005 , 231, 77-83	2.5	26
103	Effect of temperature on the salting-out effect and phase separation in aqueous solutions of sodium di-hydrogen phosphate and poly(propylene glycol). <i>Fluid Phase Equilibria</i> , 2008 , 271, 13-18	2.5	25
102	Volumetric and ultrasonic study of mixtures of 2-phenylethanol with 1-butanol, 2-butanol, and 2-methyl-1-butanol at T = (298.15\;\textit{B}23.15) K and atmospheric pressure: Measurement and prediction. <i>Journal of Molecular Liquids</i> , 2013 , 180, 121-128	6	24
101	Effect of Potassium Citrate Salts on the Transport Behavior of l-Alanine in Aqueous Solutions at T = (293.15 to 308.15) K. <i>Journal of Chemical & Engineering Data</i> , 2009 , 54, 791-794	2.8	24
100	Osmotic properties of carbohydrate aqueous solutions. <i>Fluid Phase Equilibria</i> , 2016 , 417, 171-180	2.5	24
99	Evaluation of the Capability of Ionic Liquid-Amino Acid Aqueous Systems for the Formation of Aqueous Biphasic Systems and Their Applications in Extraction. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 2650-2664	3.4	23
98	Micellization properties and related thermodynamic parameters of aqueous sodium dodecyl sulfate and sodium dodecyl sulfonate solutions in the presence of 1-propanol. <i>Fluid Phase Equilibria</i> , 2014 , 377, 1-8	2.5	23
97	Measurement and modeling of densities and sound velocities of the systems {poly(propylene glycol)+methanol, +ethanol, +1-propanol, +2-propanol and +1-butanol} at T=298.15K. <i>Journal of Chemical Thermodynamics</i> , 2006 , 38, 257-263	2.9	23
96	Toward an understanding of aqueous biphasic formation in polymerpolymer aqueous systems. <i>Polymer</i> , 2016 , 83, 1-11	3.9	22
95	Effect of polar organic solvents on the surface adsorption and micelle formation of surface active ionic liquid 1-dodecyl-3-methylimidazolium bromide in aqueous solutions and comparison with the traditional cationic surfactant dodecyltrimethylammonium bromide. <i>Colloids and Surfaces A:</i>	5.1	22
94	Thermodynamic Properties of Tripotassium Citrate in Water and in Aqueous Solutions of Polypropylene Oxide 400 over a Range of Temperatures. <i>Journal of Chemical & Data</i> , 2007, 52, 1753-1759	2.8	22

(2015-2002)

93	A modified nonrandom factor model for the calculation of solvent activities in polymer solution. <i>Fluid Phase Equilibria</i> , 2002 , 202, 413-422	2.5	22
92	Investigation of carbohydrates as non-charged, non-toxic and renewable soluting-out agent for polymer based aqueous biphasic systems implementation. <i>Polymer</i> , 2016 , 98, 365-377	3.9	21
91	Segment-based Eyring Wilson viscosity model for polymer solutions. <i>Journal of Chemical Thermodynamics</i> , 2005 , 37, 445-448	2.9	21
90	Influence of Sodium Salts on the Micellization and Interfacial Behavior of Cationic Surfactant Dodecyltrimethylammonium Bromide in Aqueous Solution. <i>Journal of Chemical & Dodecyltrimethylammonium Bromide in Aqueous Solution</i> . <i>Journal of Chemical & Dodecyltrimethylammonium Bromide in Aqueous Solution</i> . <i>Journal of Chemical & Dodecyltrimethylammonium Bromide in Aqueous Solution</i> . <i>Journal of Chemical & Dodecyltrimethylammonium Bromide in Aqueous Solution</i> . <i>Journal of Chemical & Dodecyltrimethylammonium Bromide in Aqueous Solution</i> . <i>Journal of Chemical & Dodecyltrimethylammonium Bromide in Aqueous Solution</i> . <i>Journal of Chemical & Dodecyltrimethylammonium Bromide in Aqueous Solution</i> . <i>Journal of Chemical & Dodecyltrimethylammonium Bromide in Aqueous Solution</i> . <i>Journal of Chemical & Dodecyltrimethylammonium Bromide in Aqueous Solution</i> . <i>Journal of Chemical & Dodecyltrimethylammonium Bromide in Aqueous Solution</i> . <i>Journal of Chemical & Dodecyltrimethylammonium Bromide in Aqueous Solution</i> . <i>Journal of Chemical & Dodecyltrimethylammonium Bromide in Aqueous Solution</i> . <i>Journal of Chemical & Dodecyltrimethylammonium Bromide in Aqueous Solution</i> .	2.8	20
89	Density, Speed of Sound, and Viscosity of Some Binary and Ternary Aqueous Polymer Solutions at Different Temperatures. <i>Journal of Chemical & Engineering Data</i> , 2015 , 60, 3132-3147	2.8	20
88	High stable sandwich-type polyoxometallates based on A-EsiW9O3410 Synthesis, chemical properties and characterization of [(A-EsiW9O34)2(MOH2)3CO3]13[(M = Y3+ and Yb3+). <i>Polyhedron</i> , 2008 , 27, 1855-1859	2.7	19
87	Volumetric and isentropic compressibility behaviour of aqueous solutions of (polyvinylpyrrolidone + sodium citrate) at T = (283.15 to 308.15) K. <i>Journal of Chemical Thermodynamics</i> , 2007 , 39, 1118-1124	2.9	18
86	Thermodynamics investigation of phase behavior of deep eutectic solvents-polymer aqueous biphasic systems. <i>Polymer</i> , 2018 , 143, 115-128	3.9	17
85	Effect of temperature on the aggregation behaviour and thermodynamic properties of surface active ionic liquid 1-decyl-3-methylimidazolium bromide in aqueous solutions: Surface tension, vapour pressure osmometery, conductivity, volumetric and compressibility study. <i>Journal of</i>	2.9	17
84	Chemical Thermodynamics, 2016 , 102, 68-78 Effect of simple electrolytes on the thermodynamic properties of room temperature ionic liquids in aqueous solutions. Fluid Phase Equilibria, 2010 , 298, 231-239	2.5	17
83	Volumetric and compressibility behaviour of poly(propylene glycol) [Amino acid aqueous solutions at different temperatures. <i>Journal of Chemical Thermodynamics</i> , 2015 , 90, 129-139	2.9	16
82	Thermodynamic studies of the ionic liquid 1-hexyl-3-methylimidazolium chloride [C6mim][Cl] in polyethylene glycol aqueous solutions. <i>Journal of Chemical Thermodynamics</i> , 2012 , 47, 48-55	2.9	16
81	Thermodynamics of aqueous solutions of poly ethylene glycol di-methyl ethers in the presence or absence of ammonium phosphate salts. <i>Fluid Phase Equilibria</i> , 2011 , 306, 219-228	2.5	16
80	(Liquid+liquid) equilibria for ternary mixtures of (polyvinylpyrrolidone+MgSO4+water) at different temperatures. <i>Journal of Chemical Thermodynamics</i> , 2006 , 38, 1479-1483	2.9	16
79	Vaporliquid equilibrium in aqueous systems containing poly(vinylpyrrolidone) and sodium citrate at different temperatures Experimental and modeling. <i>Fluid Phase Equilibria</i> , 2006 , 249, 33-41	2.5	16
78	Evaluation of the effect of ionic-liquids as soluting-out agents on the solubility of carbohydrates in aqueous solutions. <i>Fluid Phase Equilibria</i> , 2018 , 459, 73-84	2.5	16
77	Apparent molar volume, isentropic compressibility and conductivity of di-sodium hydrogen phosphate in water and in aqueous solutions of 1-propanol. <i>Fluid Phase Equilibria</i> , 2007 , 260, 335-342	2.5	15
76	Vapour pressure osmometry determination of water activity of binary and ternary aqueous (polymer+polymer) solutions. <i>Journal of Chemical Thermodynamics</i> , 2015 , 84, 41-49	2.9	14

75	Volumetric and viscosity studies of interactions between sodium phosphate salts and poly(propylene glycol) 400 in aqueous solutions at different temperatures. <i>Fluid Phase Equilibria</i> , 2009 , 284, 86-98	2.5	14
74	Extension of the electrolyte NRTL and Wilson models for correlation of viscosity of strong electrolyte solutions at different temperatures. <i>Fluid Phase Equilibria</i> , 2007 , 259, 157-164	2.5	14
73	Measurement of water activities of alanine+tri-potassium citrate+water system at temperatures between 293.15 and 313KExperimental and modeling. <i>Fluid Phase Equilibria</i> , 2008 , 267, 61-69	2.5	14
72	Vaporliquid Equilibria, Density, and Speed of Sound of Aqueous Solutions of Sodium Dihydrogen Citrate or Disodium Hydrogen Citrate. <i>Journal of Chemical & Data</i> , 2010, 55, 5874-5882	2.8	13
71	Vapor Pressure Osmometry Determination of Solvent Activities of Different Aqueous and Nonaqueous Polymer Solutions at 318.15 K. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 2946	5- 2 954	13
70	Effect of potassium citrate salts on the vapor-liquid equilibrium properties of aqueous solutions of alanine at different temperatures. <i>Biophysical Chemistry</i> , 2008 , 135, 116-24	3.5	13
69	New local composition model for polymer solutions. <i>Polymer</i> , 2005 , 46, 11517-11526	3.9	13
68	Synthesis and characterization of silver nanoparticles in aqueous solutions of surface active imidazolium-based ionic liquids and traditional surfactants SDS and DTAB. <i>Journal of Molecular Liquids</i> , 2019 , 273, 645-652	6	13
67	Propanol - Sugar aqueous biphasic systems as a suitable platform for biomolecules extraction. Journal of Chromatography A, 2018 , 1581-1582, 156-167	4.5	13
66	Surface and Micellar Properties of Ionic Liquid 1-Dodecyl-3-methylimidazolium Bromide in Aqueous Solution in the Absence and Presence of a Series of Organic Electrolytes. <i>Journal of Chemical & Engineering Data</i> , 2015 , 60, 1063-1071	2.8	12
65	Vapor Pressure of Acetonitrile + Polymer Binary Systems at 298.15 K. <i>Journal of Chemical & Engineering Data</i> , 2006 , 51, 2265-2269	2.8	12
64	Soluting effect of amino acids on 1-decyl-3-methylimidazolium bromide and 1-dodecyl-3-methylimidazolium bromide as cationic surfactants and sodium dodecyl sulfate as anionic surfactant in aqueous solutions. <i>Journal of Molecular Liquids</i> , 2019 , 275, 616-628	6	12
63	Novel ninhydrin-based deep eutectic solvents for amino acid detection. <i>Journal of Molecular Liquids</i> , 2020 , 303, 112644	6	11
62	Effects of addition of short-chain alcohol solvents on micellization and thermodynamic properties of anionic surfactants sodium dodecyl sulfate and sodium dodecyl sulfonate in aqueous solutions. Journal of the Iranian Chemical Society, 2018, 15, 1365-1375	2	11
61	Extension of the segment-based Wilson and NRTL models for correlation of excess molar enthalpies of polymer solutions. <i>Journal of Chemical Thermodynamics</i> , 2005 , 37, 1013-1018	2.9	11
60	Salting-in and salting-out effects of organic and inorganic ammonium salts on the aqueous polymer solutions. <i>Journal of Chemical Thermodynamics</i> , 2018 , 123, 86-98	2.9	10
59	Study of salt effects on the aggregation behavior of ionic liquid 1-dodecyl-3-methylimidazolium bromide in aqueous solution. <i>Journal of Molecular Liquids</i> , 2014 , 197, 176-183	6	10
58	Vapor Pressure Osmometry Determination of the Osmotic and Activity Coefficients of Dilute Aqueous Solutions of Symmetrical Tetraalkyl Ammonium Halides at 308.15 K. <i>Journal of Chemical & Amn: Engineering Data</i> 2014, 59, 76-81	2.8	10

(2018-2013)

57	Vapor pressure osmometry, volumetry and conductometry investigations on the interaction of sodium dodecyl sulfate with poly(ethylene glycol) and poly(propylene glycol) in aqueous solutions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2013 , 436, 260-269	5.1	10
56	Aqueous biphasic formation, volumetric and compressibility behaviour in tetrabutylammonium bromide-inorganic salts aqueous systems. <i>Journal of Chemical Thermodynamics</i> , 2013 , 67, 120-127	2.9	10
55	Modification of the NRTL and Wilson models for the representation of phase equilibrium behavior of aqueous amino acid Lelectrolyte solutions. <i>Canadian Journal of Chemistry</i> , 2008 , 86, 1126-1137	0.9	10
54	Water activities of ternary mixtures of PPG425 + K2CO3 + H2O and PPG425 + Na2CO3 + H2O at 298.15 K: Experiments and correlation. <i>Fluid Phase Equilibria</i> , 2007 , 252, 47-52	2.5	10
53	Measurement and correlation of vaporliquid equilibria of the poly(vinylpyrrolidone)+NaH2PO4+H2O system at different temperatures. <i>Calphad: Computer Coupling of Phase Diagrams and Thermochemistry</i> , 2006 , 30, 53-60	1.9	10
52	Soluting-in and soluting-out of water-soluble polymers in aqueous carbohydrate solutions studied by vapor pressure osmometry. <i>Journal of Molecular Liquids</i> , 2017 , 229, 405-416	6	9
51	Representation of vaporliquid equilibria of aqueous polymerBalt solutions by a new modified segment-based Wilson model. <i>Calphad: Computer Coupling of Phase Diagrams and Thermochemistry</i> , 2007 , 31, 164-172	1.9	9
50	Volumetric and Acoustic Properties of Aqueous Carbohydrate B olymer Solutions. <i>Journal of Chemical & Data</i> , 2016 , 61, 3144-3156	2.8	8
49	Isopiestic Determination of Water Activity in the Poly(vinylpyrrolidone) + NaCl + H2O System at Different Temperatures. <i>Journal of Chemical & Engineering Data</i> , 2005 , 50, 508-511	2.8	8
48	Modification of the nonrandom factor (NRF) model for correlation of the viscosity of polymer solutions. <i>Fluid Phase Equilibria</i> , 2005 , 232, 70-73	2.5	8
47	Vaporliquid equilibria of the polyvinylpyrrolidone+(NH4)2SO4+H2O system at different temperatures. <i>Fluid Phase Equilibria</i> , 2005 , 233, 176-183	2.5	8
46	Salting-out effect in polypropylene glycol-amino acid aqueous solutions revealed by vapor pressure osmometry. <i>Fluid Phase Equilibria</i> , 2016 , 425, 237-243	2.5	7
45	Vapor l liquid Equilibria, Density, Speed of Sound, and Refractive Index of Sodium Tungstate in Water and in Aqueous Solutions of Poly(ethyleneglycol) 6000. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 125-133	2.8	7
44	Thermodynamic properties of surfactant sodium n-heptyl sulfonate in water and in aqueous solutions of poly(ethylene glycol) at different temperatures. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2009 , 348, 177-185	5.1	7
43	Vapor pressure osmometry determination of vapor-liquid equilibria behavior of aqueous imidazolium-based ionic liquid⊕ amino acid systems. <i>Fluid Phase Equilibria</i> , 2017 , 447, 125-131	2.5	6
42	Evaluation of the effect of carbohydrates as renewable, none-charged and non-toxic soluting-out agents on the ionic-liquid-based ABS implementation. <i>Journal of Molecular Liquids</i> , 2018 , 255, 476-491	6	6
41	Differential scanning calorimetry determination of phase diagrams and water activities of aqueous carboxylic acid solutions. <i>Thermochimica Acta</i> , 2018 , 663, 46-52	2.9	6
40	Soluting-out effect of carbohydrates on the surface active ionic liquid 1-decyl-3-methylimidazolium bromide in aqueous solutions. <i>Journal of Chemical Thermodynamics</i> , 2018 , 116, 289-298	2.9	6

39	Thermodynamic investigation of the systems poly(ethylene glycol) + sodium pentane-1-sulfonate + water and poly(vinyl pyrrolidone) + sodium pentane-1-sulfonate + water. <i>Journal of Colloid and Interface Science</i> , 2010 , 346, 107-17	9.3	6
38	Effect of Aqueous Solution of Tri-potassium Citrate on the Volumetric Behavior of Poly(propylene glycol) 400 at T = (288.15 to 313.15) K. <i>Journal of Chemical & Engineering Data</i> , 2007 , 52, 1268-1272	2.8	6
37	Thermodynamic properties of solutions of sodium di-hydrogen phosphate in (1-propanol+water) mixed-solvent media over the temperature range of (283.15 to 303.15)K. <i>Journal of Chemical Thermodynamics</i> , 2008 , 40, 1012-1021	2.9	6
36	Simultaneous correlation of mean ionic activity coefficient and osmotic coefficient of electrolyte solutions by a new local composition model. <i>Fluid Phase Equilibria</i> , 2006 , 243, 92-100	2.5	6
35	Chemical composition and thermal properties of Pistacia atlantica subsp. Kurdica gum. <i>Applied Biological Chemistry</i> , 2019 , 62,	2.9	5
34	Extractions of Alkaloids Codeine and Caffeine with [Bmim][BF4]/Carbohydrate Aqueous Biphasic Systems as a Novel Class of Liquidliquid Extraction Systems. <i>Journal of Chemical & Engineering Data</i> , 2019 , 64, 916-925	2.8	5
33	(Vapour+liquid) equilibria, volumetric and compressibility behaviour of binary and ternary aqueous solutions of 1-hexyl-3-methylimidazolium chloride, methyl potassium malonate, and ethyl potassium malonate. <i>Journal of Chemical Thermodynamics</i> , 2012 , 47, 347-357	2.9	5
32	Density Modeling of Polymer Solutions with Extended Segment-Based Local Composition Nonrandom Two-Liquid (NRTL), Wilson, and Nonrandom Factor (NRF) Models. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 2156-2162	3.9	5
31	A combined molecular dynamic simulation and experimental study of thermo-physical properties of the new synthesized amino acid-based ionic liquids. <i>Journal of Molecular Liquids</i> , 2019 , 277, 290-301	6	5
30	Thermodynamic study of the soluting effect in aqueous ionic liquid - monosaccharide solutions by the vapor pressure osmometry. <i>Journal of Molecular Liquids</i> , 2017 , 248, 205-213	6	4
29	The Chemical Thermodynamic Models for Calculating the Solvent Activity Coefficient of Semidiluted Aqueous and Nonaqueous Polymer Solutions in Vapor Liquid Equilibrium. <i>Journal of Chemical & Data</i> , 2015, 60, 2701-2708	2.8	4
28	Novel Deep Eutectic Solvents Based on Pyrogallol: Synthesis and Characterizations. <i>Journal of Chemical & Chem</i>	2.8	4
27	Can isopiestic method predict the formation of deep eutectic solvents?. <i>Journal of Molecular Liquids</i> , 2021 , 333, 115865	6	4
26	ABS Composed of Ionic Liquids and Polymers. <i>Green Chemistry and Sustainable Technology</i> , 2016 , 61-88	1.1	4
25	Differential scanning calorimetry determination of Solidliquid equilibria phase diagrams for binary monocarboxylic acids solutions. <i>Fluid Phase Equilibria</i> , 2019 , 486, 1-10	2.5	4
24	The capability of tetra alkyl ammonium bromides for aqueous biphasic systems formation with both polymers and electrolytes in aqueous solutions. <i>Fluid Phase Equilibria</i> , 2018 , 465, 34-47	2.5	3
23	Vapor Pressure Osmometry, Volumetry, and Compressibility Properties for Solutions of Several Imidazolium Based Ionic Liquids in (Glycine + Water) Solutions. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 4073-4082	2.8	3
22	Thermodynamic and aggregation properties of sodium n-hexylsulfonate in aqueous solution. <i>Fluid Phase Equilibria</i> , 2014 , 363, 106-116	2.5	3

(2021-2009)

21	Conductivity, apparent molar volume and isentropic compressibility of 12-tungstosilicic acid and potassium 12-tungstosilicate in aqueous solutions at different temperatures. <i>Fluid Phase Equilibria</i> , 2009 , 277, 87-95	2.5	3
20	Thermodynamic properties of anionic surfactant/polymer/water systems with respect to polymer-surfactant interactions and salting-effect of surfactant on polymer in aqueous solutions. <i>Fluid Phase Equilibria</i> , 2016 , 425, 411-420	2.5	3
19	Phase equilibria, volumetric and compressibility properties of (tetra-n-butylammonium bromide + trisodium citrate) system at temperatures (298.15 KB18.15 K) and atmospheric pressure. <i>Fluid Phase Equilibria</i> , 2016 , 417, 158-165	2.5	3
18	Thermodynamics of clouding process in 1-butanol + water mixtures in the presence and absence of sugars. <i>Journal of Molecular Liquids</i> , 2019 , 278, 164-174	6	3
17	Vapor Pressure Osmometry Studies of Aqueous Ionic Liquid©arbohydrate Systems. <i>Journal of Chemical & Chemical </i>	2.8	2
16	Thermodynamic investigations of fullerene-polyglycerol nanostructure in aqueous solutions. <i>Fluid Phase Equilibria</i> , 2017 , 450, 57-64	2.5	2
15	Velocity-Curve Analysis of the Spectroscopic Binary Stars V373 Cas, V2388 Oph, V401 Cyg, GM Dra, V523 Cas, AB And and HD 141929 by Artificial Neural Networks. <i>Publications of the Astronomical Society of Australia</i> , 2009 , 26, 121-127	5.5	2
14	Vapor-liquid equilibrium properties of sodium n-heptyl sulfonate in Water and in aqueous solutions of poly(ethylene glycol) at different temperatures. <i>Journal of the Iranian Chemical Society</i> , 2010 , 7, 621	- <i>6</i> 29	2
13	Soluting Effect in Ternary Aqueous Solutions of Ionic Liquids by Isopiestic Equilibrium Studies and Applying the Linear Isopiestic Relations for Estimating Their Speed of Sound, Density, and Surface Tension Data. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 4435-4442	2.8	2
12	Soluting Effects of Various Additives on the Clouding Behavior of Poly(propylene glycol) 1000 in Aqueous Media. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 2798-2804	2.8	1
11	Velocity curve analysis of the spectroscopic binary stars V2082 Cyg, V918 Her, BW Dra, V2357 Oph, YZ Cas and V380 Cygni by the Artificial Neural Networks. <i>New Astronomy</i> , 2009 , 14, 478-482	1.8	1
10	Isopiestic Studies on Mixed Ionic Liquid Aqueous Solutions at 298.15 K. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 1376-1384	2.8	1
9	A theoretical study for isopiestic equilibrium mixtures of ionic liquid 1140 onic liquid 2140 water systems. <i>Journal of Molecular Liquids</i> , 2021 , 328, 115280	6	1
8	Molecular interactions in ternary mixtures tetra-n-butylammonium bromidelhorganic saltsWater according to ultrasonic data at T = 293.15B18.15 K. <i>Russian Journal of Physical Chemistry A</i> , 2016 , 90, 2517-2531	0.7	1
7	Hydrophobic deep eutectic solvents: thermo-physical characteristics and their application in liquid [] quid extraction. <i>Journal of the Iranian Chemical Society</i> ,1	2	1
6	Physicochemical Properties of Deep Eutectic Solvents: A Review. <i>Journal of Molecular Liquids</i> , 2022 , 11	9524	1
5	Volumetric and isentropic compressibility behaviour of ionic liquid, tetrapropylammonium bromide in some inorganic salts aqueous systems at T = (293.15 to 318.15) K. <i>Physics and Chemistry of Liquids</i> , 2021 , 59, 549-563	1.5	О
4	Carbohydrate-based aqueous biphasic systems for biomolecules extraction. <i>Separation and Purification Technology</i> , 2021 , 277, 119460	8.3	O

Triple soluting-out effect in ionic liquid based aqueous triphasic systems revealed by vapor pressure osmometry. Fluid Phase Equilibria, 2022, 554, 113326

2.5

Investigation on aggregation behavior of 1-octyl-3-methylimidazolium bromide in water and in CuO-water nanofluids by measuring electrical conductivity and surface tension. *Journal of the Iranian Chemical Society*,1

2

Importance of Triple Soluting-Out Effect in the Formation of Aqueous Three-Phase Systems:

Thermodynamics and Applications in Extraction of Biomolecules. *Journal of Molecular Liquids*, **2022**, 119 163