
Cheng-Gui Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3154167/publications.pdf Version: 2024-02-01

CHENC-CULHAN

#	Article	IF	CITATIONS
1	Validation of Reference Genes for Gene Expression Studies in Virus-Infected Nicotiana benthamiana Using Quantitative Real-Time PCR. PLoS ONE, 2012, 7, e46451.	1.1	337
2	A High Throughput Barley Stripe Mosaic Virus Vector for Virus Induced Gene Silencing in Monocots and Dicots. PLoS ONE, 2011, 6, e26468.	1.1	253
3	<i>Barley stripe mosaic virus</i> γb Protein Subverts Autophagy to Promote Viral Infection by Disrupting the ATG7-ATG8 Interaction. Plant Cell, 2018, 30, 1582-1595.	3.1	114
4	Wheat yellow mosaic virus Widely Occurring in Wheat (Triticum aestivum) in China. Plant Disease, 2000, 84, 627-630.	0.7	79
5	Development of <i>Beet necrotic yellow vein virus</i> â€based vectors for multipleâ€gene expression and guide <scp>RNA</scp> delivery in plant genome editing. Plant Biotechnology Journal, 2019, 17, 1302-1315.	4.1	75
6	RNA4-encoded p31 of beet necrotic yellow vein virus is involved in efficient vector transmission, symptom severity and silencing suppression in roots. Journal of General Virology, 2007, 88, 1611-1619.	1.3	70
7	The Barley stripe mosaic virus \hat{I}^3 b protein promotes chloroplast-targeted replication by enhancing unwinding of RNA duplexes. PLoS Pathogens, 2017, 13, e1006319.	2.1	65
8	The Evolutionary History of <i>Beet necrotic yellow vein virus</i> Deduced from Genetic Variation, Geographical Origin and Spread, and the Breaking of Host Resistance. Molecular Plant-Microbe Interactions, 2011, 24, 207-218.	1.4	64
9	Complete sequence analysis reveals two distinct poleroviruses infecting cucurbits in China. Archives of Virology, 2008, 153, 1155-1160.	0.9	53
10	Molecular characterization of two genotypes of a new polerovirus infecting brassicas in China. Archives of Virology, 2011, 156, 2251-2255.	0.9	47
11	Amino Acid Sequence Motifs Essential for PO-Mediated Suppression of RNA Silencing in an Isolate of <i>Potato leafroll virus</i> from Inner Mongolia. Molecular Plant-Microbe Interactions, 2014, 27, 515-527.	1.4	47
12	Barley Stripe Mosaic Virus \hat{I}^3 b Interacts with Glycolate Oxidase and Inhibits Peroxisomal ROS Production to Facilitate Virus Infection. Molecular Plant, 2018, 11, 338-341.	3.9	46
13	Phosphorylation of TGB1 by protein kinase CK2 promotes barley stripe mosaic virus movement in monocots and dicots. Journal of Experimental Botany, 2015, 66, 4733-4747.	2.4	44
14	Hijacking of the nucleolar protein fibrillarin by TGB1 is required for cellâ€toâ€cell movement of <i>Barley stripe mosaic virus</i> . Molecular Plant Pathology, 2018, 19, 1222-1237.	2.0	41
15	Interaction between Brassica yellows virus silencing suppressor PO and plant SKP1 facilitates stability of PO <i>inÂvivo</i> against degradation by proteasome and autophagy pathways. New Phytologist, 2019, 222, 1458-1473.	3.5	41
16	<i>Barley stripe mosaic virus</i> infection requires PKAâ€mediated phosphorylation of γb for suppression of both RNA silencing and the host cell death response. New Phytologist, 2018, 218, 1570-1585.	3.5	40
17	Distribution and molecular diversity of three cucurbit-infecting poleroviruses in China. Virus Research, 2009, 145, 341-346.	1.1	39
18	Rice black-streaked dwarf virus P6 self-interacts to form punctate, viroplasm-like structures in the cytoplasm and recruits viroplasm-associated protein P9-1. Virology Journal, 2011, 8, 24.	1.4	37

Cheng-Gui Han

#	Article	IF	CITATIONS
19	Synergistic infection of BrYV and PEMV 2 increases the accumulations of both BrYV and BrYV-derived siRNAs in Nicotiana benthamiana. Scientific Reports, 2017, 7, 45132.	1.6	36
20	Brachypodium distachyon line Bd3-1 resistance is elicited by the barley stripe mosaic virus triple gene block 1 movement protein. Journal of General Virology, 2012, 93, 2729-2739.	1.3	33
21	Ring structure amino acids affect the suppressor activity of melon aphid-borne yellows virus P0 protein. Virology, 2010, 406, 21-27.	1.1	31
22	Analysis of the subgenomic RNAs and the small open reading frames of Beet black scorch virus. Journal of General Virology, 2006, 87, 3077-3086.	1.3	30
23	Nonstructural protein P7-2 encoded by Rice black-streaked dwarf virus interacts with SKP1, a core subunit of SCF ubiquitin ligase. Virology Journal, 2013, 10, 325.	1.4	30
24	A small peptide inhibits siRNA amplification in plants by mediating autophagic degradation of SGS3/RDR6 bodies. EMBO Journal, 2021, 40, e108050.	3.5	30
25	Complete genome sequence analysis identifies a new genotype of brassica yellows virus that infects cabbage and radish in China. Archives of Virology, 2014, 159, 2177-2180.	0.9	29
26	Discovery and Characterization of a Novel Carlavirus Infecting Potatoes in China. PLoS ONE, 2013, 8, e69255.	1.1	28
27	Detection and identification of Fabavirus species by one-step RT-PCR and multiplex RT-PCR. Journal of Virological Methods, 2014, 197, 77-82.	1.0	28
28	Rice black streaked dwarf virus P7-2 forms a SCF complex through binding to Oryza sativa SKP1-like proteins, and interacts with GID2 involved in the gibberellin pathway. PLoS ONE, 2017, 12, e0177518.	1.1	28
29	<i>Barley stripe mosaic virus</i> ^î ³b protein disrupts chloroplast antioxidant defenses to optimize viral replication. EMBO Journal, 2021, 40, e107660.	3.5	27
30	Analysis of Nucleotide Sequences and Multimeric Forms of a Novel Satellite RNA Associated with Beet Black Scorch Virus. Journal of Virology, 2005, 79, 3664-3674.	1.5	26
31	Deep Sequencing–Based Transcriptome Profiling Reveals Comprehensive Insights into the Responses of Nicotiana benthamiana to Beet necrotic yellow vein virus Infections Containing or Lacking RNA4. PLoS ONE, 2014, 9, e85284.	1.1	26
32	Phosphorylation of Beet black scorch virus coat protein by PKA is required for assembly and stability of virus particles. Scientific Reports, 2015, 5, 11585.	1.6	26
33	Development of three full-length infectious cDNA clones of distinct brassica yellows virus genotypes for agrobacterium-mediated inoculation. Virus Research, 2015, 197, 13-16.	1.1	25
34	First report on the occurrence of Cucurbit aphid-borne yellows virus on nine cucurbitaceous species in China. Plant Pathology, 2008, 57, 390-390.	1.2	22
35	Brassica yellows virus PO protein impairs the antiviral activity of NbRAF2 in Nicotiana benthamiana. Journal of Experimental Botany, 2018, 69, 3127-3139.	2.4	22
36	Two virus-encoded RNA silencing suppressors, P14 ofBeet necrotic yellow vein virus and S6 ofRice black streak dwarf virus. Science Bulletin, 2005, 50, 305-310.	1.7	21

CHENG-GUI HAN

#	Article	IF	CITATIONS
37	Phylogenetic analysis of Beet necrotic yellow vein virus isolates from China. Virus Genes, 2008, 36, 429-432.	0.7	21
38	Diversity of Fusarium species associated with root rot of sugar beet in China. Journal of General Plant Pathology, 2018, 84, 321-329.	0.6	20
39	Sensitivity of Rhizoctonia spp. to flutolanil and characterization of the point mutation in succinate dehydrogenase conferring fungicide resistance. European Journal of Plant Pathology, 2019, 155, 13-23.	0.8	20
40	CCR4, a RNA decay factor, is hijacked by a plant cytorhabdovirus phosphoprotein to facilitate virus replication. ELife, 2020, 9, .	2.8	20
41	Complete nucleotide sequence of a new strain of Tobacco necrosis virus A infecting soybean in China and infectivity of its full-length cDNA clone. Virus Genes, 2008, 36, 259-266.	0.7	19
42	Infection of Beet necrotic yellow vein virus with RNA4-encoded P31 specifically up-regulates pathogenesis-related protein 10 in Nicotiana benthamiana. Virology Journal, 2014, 11, 118.	1.4	19
43	Brassica yellows virus' movement protein upregulates anthocyanin accumulation, leading to the development of purple leaf symptoms on Arabidopsis thaliana. Scientific Reports, 2018, 8, 16273.	1.6	19
44	The serine/threonine/tyrosine kinase STY46 defends against hordeivirus infection by phosphorylating γb protein. Plant Physiology, 2021, 186, 715-730.	2.3	19
45	Genome-Wide microRNA Profiling Using Oligonucleotide Microarray Reveals Regulatory Networks of microRNAs in Nicotiana benthamiana During Beet Necrotic Yellow Vein Virus Infection. Viruses, 2020, 12, 310.	1.5	18
46	Simultaneous detection and differentiation of three genotypes of Brassica yellows virus by multiplex reverse transcription-polymerase chain reaction. Virology Journal, 2016, 13, 189.	1.4	17
47	Complete genomic sequence analysis reveals a novel fabavirus infecting cucurbits in China. Archives of Virology, 2012, 157, 597-600.	0.9	16
48	The Conserved Proline18 in the Polerovirus P3a Is Important for Brassica Yellows Virus Systemic Infection. Frontiers in Microbiology, 2018, 9, 613.	1.5	16
49	Anastomosis group and pathogenicity of Rhizoctonia spp. associated with seedling damping-off of sugar beet in China. European Journal of Plant Pathology, 2019, 153, 869-878.	0.8	14
50	Improved Pathogenicity of a Beet Black Scorch Virus Variant by Low Temperature and Co-infection with Its Satellite RNA. Frontiers in Microbiology, 2016, 7, 1771.	1.5	13
51	Molecular detection and identification of eight potato viruses in Gansu province of China. Current Plant Biology, 2021, 25, 100184.	2.3	13
52	Genetic diversity and population structure of beet necrotic yellow vein virus in China. Virus Research, 2015, 205, 54-62.	1.1	12
53	The Three Essential Motifs in P0 for Suppression of RNA Silencing Activity of Potato leafroll virus Are Required for Virus Systemic Infection. Viruses, 2019, 11, 170.	1.5	12
54	Analysis of nucleotide sequence of wheat yellow mosaic virus genomic RNAs. Science in China Series C: Life Sciences, 1999, 42, 554-560.	1.3	11

CHENG-GUI HAN

#	Article	IF	CITATIONS
55	Transcriptome Analysis of Beta macrocarpa and Identification of Differentially Expressed Transcripts in Response to Beet Necrotic Yellow Vein Virus Infection. PLoS ONE, 2015, 10, e0132277.	1.1	11
56	Tobacco Necrosis Virus-A ^C Single Coat Protein Amino Acid Substitutions Determine Host-Specific Systemic Infections of <i>Nicotiana benthamiana</i> and Soybean. Molecular Plant-Microbe Interactions, 2021, 34, 49-61.	1.4	11
57	Detection and characterization of spontaneous internal deletion mutants of Beet Necrotic yellow vein virus RNA3 from systemic host Nicotiana benthamiana. Virology Journal, 2011, 8, 335.	1.4	10
58	A novel strain of Beet western yellows virus infecting sugar beet with two distinct genotypes differing in the 5′-terminal half of genome. Virus Genes, 2011, 42, 141-149.	0.7	10
59	Two distinct sites are essential for virulent infection and support of variant satellite RNA replication in spontaneous beet black scorch virus variants. Journal of General Virology, 2012, 93, 2718-2728.	1.3	10
60	Molecular Detection of Potato Viruses in Bangladesh and Their Phylogenetic Analysis. Plants, 2020, 9, 1413.	1.6	10
61	Incidence and prevalence levels of three aphid-transmitted viruses in crucifer crops in China. Journal of Integrative Agriculture, 2022, 21, 774-780.	1.7	10
62	Characterization of the Mycovirome from the Plant-Pathogenic Fungus Cercospora beticola. Viruses, 2021, 13, 1915.	1.5	8
63	Competition Between <i>Cucumber Mosaic Virus</i> Subgroup I and II Isolates in Tobacco. Journal of Phytopathology, 2009, 157, 457-464.	0.5	7
64	Characterization of microRNAs of Beta macrocarpa and their responses to Beet necrotic yellow vein virus infection. PLoS ONE, 2017, 12, e0186500.	1.1	7
65	First Report of Potato Virus S Infecting Potatoes in Bangladesh. Plant Disease, 2019, 103, 781.	0.7	7
66	Barley stripe mosaic virus γb protein targets thioredoxin h-type 1 to dampen salicylic acid-mediated defenses. Plant Physiology, 2022, 189, 1715-1727.	2.3	7
67	Molecular characterization of two Chinese isolates of Beet mosaic virus. Virus Genes, 2007, 35, 795-799.	0.7	6
68	Molecular characterization of two Chinese isolates of Beet western yellows virus infecting sugar beet. Virus Genes, 2010, 41, 105-110.	0.7	6
69	Nucleotide sequence of a chickpea chlorotic stunt virus relative that infects pea and faba bean in China. Archives of Virology, 2012, 157, 1393-1396.	0.9	6
70	A Binucleate Rhizoctonia anastomosis group (AG-W) is the causal agent of sugar beet seedling damping-off disease in China. European Journal of Plant Pathology, 2019, 155, 53-69.	0.8	6
71	Functional Characterization of RNA Silencing Suppressor P0 from Pea Mild Chlorosis Virus. International Journal of Molecular Sciences, 2020, 21, 7136.	1.8	6
72	Development of polyclonal antiserum against movement protein from Potato leafroll virus and its application for the virus detection. Phytopathology Research, 2019, 1, .	0.9	5

CHENG-GUI HAN

#	Article	IF	CITATIONS
73	A reverse transcription loopâ€mediated isothermal amplification assay for the detection of strawberry mottle virus. Journal of Phytopathology, 2021, 169, 295-302.	0.5	5
74	First Report of Phytoplasma â€~ <i>Candidatus</i> Phytoplasma aurantifolia' Associated with Purple Top Diseased Potatoes (<i>Solanum tuberosum</i>) in Guangdong Province, China. Plant Disease, 2019, 103, 1015-1015.	0.7	5
75	First Report of Cucurbit Aphid-Borne Yellows Virus in Passion Fruit Plants Exhibiting Mosaic and Mottling in China. Plant Disease, 2020, 104, 601-601.	0.7	4
76	A Simple Method for the Acquisition and Transmission of Brassica Yellows Virus from Transgenic Plants and Frozen Infected Leaves by Aphids. Plants, 2021, 10, 1944.	1.6	4
77	First Report of <i>Potato virus H</i> Infecting Potatoes in Bangladesh. Plant Disease, 2019, 103, 1051-1051.	0.7	4
78	Effect of Oligogalacturonides on Seed Germination and Disease Resistance of Sugar Beet Seedling and Root. Journal of Fungi (Basel, Switzerland), 2022, 8, 716.	1.5	4
79	Palmitoylation of γb protein directs a dynamic switch between <i>Barley stripe mosaic virus</i> replication and movement. EMBO Journal, 2022, 41, .	3.5	3
80	Comparative Analysis of Biological Characteristics among PO Proteins from Different Brassica Yellows Virus Genotypes. Biology, 2021, 10, 1076.	1.3	2
81	First Report of Tobacco Streak Virus on <i>Echinacea purpurea</i> in China. Plant Disease, 2022, 106, 3005.	0.7	2
82	Development of polyclonal antisera against movement proteins from three poleroviruses infecting cucurbits. Phytopathology Research, 2020, 2, .	0.9	1
83	Development of a reverse transcription loopâ€mediated isothermal amplification assay for rapid detection of strawberry crinkle virus. Journal of Phytopathology, 0, , .	0.5	1
84	The Carboxyl Terminal Regions of PO Protein Are Required for Systemic Infections of Poleroviruses. International Journal of Molecular Sciences, 2022, 23, 1945.	1.8	1
85	A report on the 10th International Congress of Plant Pathology. Food Security, 2013, 5, 895-898.	2.4	0