
Elazar Zelzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3154136/publications.pdf Version: 2024-02-01

FLAZAD ZELZED

#	Article	IF	CITATIONS
1	A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development (Cambridge), 2015, 142, 817-831.	1.2	414
2	Skeletal defects in VEGF120/120 mice reveal multiple roles for VEGF in skeletogenesis. Development (Cambridge), 2002, 129, 1893-1904.	1.2	387
3	VEGFA is necessary for chondrocyte survival during bone development. Development (Cambridge), 2004, 131, 2161-2171.	1.2	347
4	Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mechanisms of Development, 2001, 106, 97-106.	1.7	315
5	Bone Ridge Patterning during Musculoskeletal Assembly Is Mediated through SCX Regulation of Bmp4 at the Tendon-Skeleton Junction. Developmental Cell, 2009, 17, 861-873.	3.1	270
6	HIF1α regulation of <i>Sox9</i> is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development (Cambridge), 2007, 134, 3917-3928.	1.2	260
7	The genetic basis for skeletal diseases. Nature, 2003, 423, 343-348.	13.7	248
8	Tendon-bone attachment unit is formed modularly by a distinct pool of <i>Scx</i> - and <i>Sox9</i> -positive progenitors. Development (Cambridge), 2013, 140, 2680-2690.	1.2	235
9	Muscle Contraction Is Necessary to Maintain Joint Progenitor Cell Fate. Developmental Cell, 2009, 16, 734-743.	3.1	230
10	Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development (Cambridge), 2010, 137, 2807-2817.	1.2	216
11	Multiple Roles of Vascular Endothelial Growth Factor (VEGF) in Skeletal Development, Growth, and Repair. Current Topics in Developmental Biology, 2004, 65, 169-187.	1.0	193
12	Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development (Cambridge), 2011, 138, 3247-3259.	1.2	155
13	Joint Development Involves a Continuous Influx of Gdf5-Positive Cells. Cell Reports, 2016, 15, 2577-2587.	2.9	147
14	Tendonâ€ŧoâ€bone attachment: From development to maturity. Birth Defects Research Part C: Embryo Today Reviews, 2014, 102, 101-112.	3.6	146
15	Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development (Cambridge), 2002, 129, 1893-904.	1.2	145
16	Mechanical regulation of musculoskeletal system development. Development (Cambridge), 2017, 144, 4271-4283.	1.2	112
17	Muscle contraction controls skeletal morphogenesis through regulation of chondrocyte convergent extension. Developmental Biology, 2012, 370, 154-163.	0.9	108
18	HIF1α is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development. Development (Cambridge), 2012, 139, 4473-4483.	1.2	102

Elazar Zelzer

#	Article	IF	CITATIONS
19	The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of <i>Vegf</i> . Development (Cambridge), 2009, 136, 1263-1272.	1.2	97
20	The Proprioceptive System Masterminds Spinal Alignment: Insight into the Mechanism of Scoliosis. Developmental Cell, 2017, 42, 388-399.e3.	3.1	78
21	On the development of the patella. Development (Cambridge), 2015, 142, 1831-1839.	1.2	67
22	Transport of membrane-bound mineral particles in blood vessels during chicken embryonic bone development. Bone, 2016, 83, 65-72.	1.4	62
23	Deposition of collagen type I onto skeletal endothelium reveals a new role for blood vessels in regulating bone morphology. Development (Cambridge), 2016, 143, 3933-3943.	1.2	57
24	Cell fate choices in Drosophila tracheal morphogenesis. BioEssays, 2000, 22, 219-226.	1.2	54
25	A Mechanical Jack-like Mechanism Drives Spontaneous Fracture Healing in Neonatal Mice. Developmental Cell, 2014, 31, 159-170.	3.1	54
26	Piezo2 expressed in proprioceptive neurons is essential for skeletal integrity. Nature Communications, 2020, 11, 3168.	5.8	52
27	One load to rule them all: Mechanical control of the musculoskeletal system in development and aging. Differentiation, 2013, 86, 104-111.	1.0	51
28	Repositioning Forelimb Superficialis Muscles: Tendon Attachment and Muscle Activity Enable Active Relocation of Functional Myofibers. Developmental Cell, 2013, 26, 544-551.	3.1	47
29	New functions for the proprioceptive system in skeletal biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170327.	1.8	46
30	PTH Induces Systemically Administered Mesenchymal Stem Cells to Migrate to and Regenerate Spine Injuries. Molecular Therapy, 2016, 24, 318-330.	3.7	43
31	Development of migrating tendon-bone attachments involves replacement of progenitor populations. Development (Cambridge), 2018, 145, .	1.2	40
32	Development of a subset of forelimb muscles and their attachment sites requires the ulnar-mammary syndrome gene <i>Tbx3</i> . DMM Disease Models and Mechanisms, 2016, 9, 1257-1269.	1.2	38
33	Bi-fated tendon-to-bone attachment cells are regulated by shared enhancers and KLF transcription factors. ELife, 2021, 10, .	2.8	36
34	A novel nonosteocytic regulatory mechanism of bone modeling. PLoS Biology, 2019, 17, e3000140.	2.6	35
35	Isometric Scaling in Developing Long Bones Is Achieved by an Optimal Epiphyseal Growth Balance. PLoS Biology, 2015, 13, e1002212.	2.6	32
36	Common cellular origin and diverging developmental programs for different sesamoid bones. Development (Cambridge), 2019, 146, .	1.2	30

Elazar Zelzer

#	Article	IF	CITATIONS
37	Bone morphology is regulated modularly by global and regional genetic programs. Development (Cambridge), 2019, 146, .	1.2	27
38	Nonradioactive In Situ Hybridization on Skeletal Tissue Sections. Methods in Molecular Biology, 2014, 1130, 203-215.	0.4	27
39	The Proprioceptive System Regulates Morphologic Restoration of Fractured Bones. Cell Reports, 2017, 20, 1775-1783.	2.9	21
40	Endothelial cells regulate neural crest and second heart field morphogenesis. Biology Open, 2014, 3, 679-688.	0.6	19
41	Vascular patterning regulates interdigital cell death by a ROS-mediated mechanism. Development (Cambridge), 2015, 142, 672-80.	1.2	15
42	BCKDK regulates the TCA cycle through PDC in the absence of PDK family during embryonic development. Developmental Cell, 2021, 56, 1182-1194.e6.	3.1	10
43	More than movement: the proprioceptive system as a new regulator of musculoskeletal biology. Current Opinion in Physiology, 2021, 20, 77-89.	0.9	10
44	Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development (Cambridge), 2010, 137, 3347-3347.	1.2	9
45	Application of 3D MAPs pipeline identifies the morphological sequence chondrocytes undergo and the regulatory role of GDF5 in this process. Nature Communications, 2021, 12, 5363.	5.8	9
46	Immunofluorescent Staining of Adult Murine Paraffin-Embedded Skeletal Tissue. Methods in Molecular Biology, 2021, 2230, 337-344.	0.4	1