Yongbo Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3154089/publications.pdf

Version: 2024-02-01

623734 642732 24 631 14 23 citations g-index h-index papers 24 24 24 760 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Konjaku flour reduces obesity in mice by modulating the composition of the gut microbiota. International Journal of Obesity, 2019, 43, 1631-1643.	3.4	105
2	Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability. Pharmacological Research, 2022, 175, 106020.	7.1	72
3	Gut microbiota and hypertension: From pathogenesis to new therapeutic strategies. Clinics and Research in Hepatology and Gastroenterology, 2018, 42, 110-117.	1.5	54
4	Gut microbiota and allergy/asthma: From pathogenesis to new therapeutic strategies. Allergologia Et Immunopathologia, 2017, 45, 305-309.	1.7	51
5	Gut microbiota and obesity: implications for fecal microbiota transplantation therapy. Hormones, 2017, 16, 223-234.	1.9	47
6	Probiotics alleviate autoimmune hepatitis in mice through modulation of gut microbiota and intestinal permeability. Journal of Nutritional Biochemistry, 2021, 98, 108863.	4.2	42
7	Gut microbiota and chronic kidney disease: implications for novel mechanistic insights and therapeutic strategies. International Urology and Nephrology, 2018, 50, 289-299.	1.4	39
8	Gut microbiota and obesity: implications for fecal microbiota transplantation therapy. Hormones, 2017, 13, 223-234.	1.9	27
9	The Gut Microbiome and Hepatocellular Carcinoma: Implications for Early Diagnostic Biomarkers and Novel Therapies. Liver Cancer, 2022, 11, 113-125.	7.7	27
10	The development of probiotics therapy to obesity: a therapy that has gained considerable momentum. Hormones, 2018, 17, 141-151.	1.9	23
11	Altered Gut Microbiota in HIV Infection: Future Perspective of Fecal Microbiota Transplantation Therapy. AIDS Research and Human Retroviruses, 2019, 35, 229-235.	1.1	22
12	Gut Microbiota and Parkinson's Disease: Implications for Faecal Microbiota Transplantation Therapy. ASN Neuro, 2021, 13, 175909142110162.	2.7	19
13	Future prospect of faecal microbiota transplantation as a potential therapy in asthma. Allergologia Et Immunopathologia, 2018, 46, 307-309.	1.7	17
14	Gut microbiota and metabolic disease: from pathogenesis to new therapeutic strategies. Reviews in Medical Microbiology, 2016, 27, 141-152.	0.9	15
15	Effects of Konjaku Flour on the Gut Microbiota of Obese Patients. Frontiers in Cellular and Infection Microbiology, 2022, 12, 771748.	3.9	12
16	Gut microbiota and colorectal cancer: insights into pathogenesis for novel therapeutic strategies. Zeitschrift Fur Gastroenterologie, 2017, 55, 872-880.	0.5	11
17	Change in gut microbiota for eczema: Implications for novel therapeutic strategies. Allergologia Et Immunopathologia, 2018, 46, 281-290.	1.7	11
18	The gut microbiome as a target for adjuvant therapy in insomnia disorder. Clinics and Research in Hepatology and Gastroenterology, 2022, 46, 101834.	1.5	11

#	Article	IF	CITATIONS
19	Gastrointestinal Autonomic Neuropathy Exacerbates Gut Microbiota Dysbiosis in Adult Patients With Type 2 Diabetes Mellitus. Frontiers in Cellular and Infection Microbiology, 2021, 11, 804733.	3.9	11
20	Epidemiology and Genetic Diversity of Rotavirus in Kunming, China, in 2015. Intervirology, 2018, 61, 9-13.	2.8	9
21	Gut microbiota and depression: from pathogenesis to new therapeutic strategies. Reviews in Medical Microbiology, 2017, 28, 56-62.	0.9	4
22	Role of the microbiota in cancer growth and necrosis: the challenges and opportunities of bacteriotherapy for cancer and its complications. Reviews in Medical Microbiology, 2018, 29, 20-23.	0.9	1
23	Rapamycin and Paclitaxel Affect Human Aortic Smooth Muscle Cells-Derived Foam Cells Viability and Proliferation. Brazilian Journal of Cardiovascular Surgery, 2022, 37, .	0.6	1
24	Commentary: Boosting Vaccine-Elicited Respiratory Mucosal and Systemic COVID-19 Immunity in Mice With the Oral Lactobacillus plantarum. Frontiers in Nutrition, 2022, 9, 846379.	3.7	0