Ming Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3153898/publications.pdf

Version: 2024-02-01

		109321	114465
59	15,072	35	63
papers	citations	h-index	g-index
68	68	68	18576
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Steering the Glycerol Electroâ€Reforming Selectivity via Cation–Intermediate Interactions. Angewandte Chemie, 2022, 134, .	2.0	6
2	Steering the Glycerol Electroâ€Reforming Selectivity via Cation–Intermediate Interactions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	37
3	Interlayer Structure Manipulation of Iron Oxychloride by Potassium Cation Intercalation to Steer H ₂ O ₂ Activation Pathway. Journal of the American Chemical Society, 2022, 144, 4294-4299.	13.7	52
4	Electrochemical Urea Oxidation in Different Environment: From Mechanism to Devices. ChemCatChem, 2022, 14, .	3.7	21
5	A review of pulse electrolysis for efficient energy conversion and chemical production. Journal of Energy Chemistry, 2021, 59, 69-82.	12.9	42
6	Recognition of Surface Oxygen Intermediates on NiFe Oxyhydroxide Oxygen-Evolving Catalysts by Homogeneous Oxidation Reactivity. Journal of the American Chemical Society, 2021, 143, 1493-1502.	13.7	111
7	Catalyst Design and Progresses for Urea Oxidation Electrolysis in Alkaline Media. Topics in Catalysis, 2021, 64, 532-558.	2.8	19
8	Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes. Nature Electronics, 2021, 4, 653-663.	26.0	61
9	Deciphering and Suppressing Overâ€Oxidized Nitrogen in Nickelâ€Catalyzed Urea Electrolysis. Angewandte Chemie, 2021, 133, 26860-26866.	2.0	18
10	Deciphering and Suppressing Overâ€Oxidized Nitrogen in Nickelâ€Catalyzed Urea Electrolysis. Angewandte Chemie - International Edition, 2021, 60, 26656-26662.	13.8	81
11	Innenrýcktitelbild: Deciphering and Suppressing Overâ€Oxidized Nitrogen in Nickelâ€Catalyzed Urea Electrolysis (Angew. Chem. 51/2021). Angewandte Chemie, 2021, 133, 27071-27071.	2.0	O
12	Dihydroxyacetone valorization with high atom efficiency via controlling radical oxidation pathways over natural mineral-inspired catalyst. Nature Communications, 2021, 12, 6840.	12.8	13
13	Atomicâ€Precision Gold Clusters for NIRâ€II Imaging. Advanced Materials, 2019, 31, e1901015.	21.0	279
14	Chemically modified nanofoci unifying plasmonics and catalysis. Chemical Science, 2019, 10, 5929-5934.	7.4	13
15	Chelating Nâ€Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO ₂ Reduction to Formate and Carbon Monoxide: Surface Organometallic Chemistry. Angewandte Chemie, 2018, 130, 5075-5079.	2.0	39
16	Chelating Nâ∈Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO ₂ Reduction to Formate and Carbon Monoxide: Surface Organometallic Chemistry. Angewandte Chemie - International Edition, 2018, 57, 4981-4985.	13.8	110
17	Nanosecond-Laser-Based Charge Transfer Plasmon Engineering of Solution-Assembled Nanodimers. Nano Letters, 2018, 18, 7014-7020.	9.1	21
18	Role of miR-29 in mediating offspring lung phenotype in a rodent model of intrauterine growth restriction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R1017-R1026.	1.8	13

#	Article	IF	Citations
19	Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nature Communications, 2017, 8, 14283.	12.8	453
20	Supramolecular Porphyrin Cages Assembled at Molecular–Materials Interfaces for Electrocatalytic CO Reduction. ACS Central Science, 2017, 3, 1032-1040.	11.3	65
21	Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction. Nano Research, 2017, 10, 3629-3637.	10.4	42
22	Visible to Near-Infrared Fluorescence Enhanced Cellular Imaging on Plasmonic Gold Chips. Small, 2016, 12, 457-465.	10.0	33
23	Multiplexed Anti-Toxoplasma IgG, IgM, and IgA Assay on Plasmonic Gold Chips: towards Making Mass Screening Possible with Dye Test Precision. Journal of Clinical Microbiology, 2016, 54, 1726-1733.	3.9	29
24	"Flash―preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag ⁺ soldering: toward effective plasmonic tuning of solution-assembled nanomaterials. Chemical Science, 2016, 7, 5435-5440.	7.4	33
25	Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li–S Batteries. Advanced Materials, 2016, 28, 9094-9102.	21.0	184
26	Dry Sintering Meets Wet Silverâ€ion "Solderingâ€: Chargeâ€Transfer Plasmon Engineering of Solutionâ€Assembled Gold Nanodimers From Visible to Nearâ€Infraredâ€I and Ilâ€Regions. Angewandte Chel International Edition, 2016, 55, 14296-14300.	mi ∉ 3.8	34
27	Dry Sintering Meets Wet Silverâ€ion "Solderingâ€: Chargeâ€Transfer Plasmon Engineering of Solutionâ€Assembled Gold Nanodimers From Visible to Nearâ€Infraredâ€I and Ilâ€Regions. Angewandte Cher 2016, 128, 14508-14512.	mi e, 0	12
28	3D Graphitic Foams Derived from Chloroaluminate Anion Intercalation for Ultrafast Aluminumâ€ion Battery. Advanced Materials, 2016, 28, 9218-9222.	21.0	302
29	Surface Charge Polarization at the Interface: Enhancing the Oxygen Reduction via Precise Synthesis of Heterogeneous Ultrathin Pt/PtTe Nanowire. Chemistry of Materials, 2016, 28, 8890-8898.	6.7	24
30	Carbon Nanostructures: Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li–S Batteries (Adv. Mater. 41/2016). Advanced Materials, 2016, 28, 9016-9016.	21.0	5
31	A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Research, 2016, 9, 28-46.	10.4	773
32	Blending Cr ₂ O ₃ into a NiO–Ni Electrocatalyst for Sustained Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 11989-11993.	13.8	172
33	Nickel-coated silicon photocathode for water splitting in alkaline electrolytes. Nano Research, 2015, 8, 1577-1583.	10.4	63
34	Graphene: Graphene Nanoribbons Under Mechanical Strain (Adv. Mater. 2/2015). Advanced Materials, 2015, 27, 392-392.	21.0	3
35	Overcoming the Coupling Dilemma in DNAâ€Programmable Nanoparticle Assemblies by "Ag ⁺ Soldering― Small, 2015, 11, 2247-2251.	10.0	36
36	Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS ₂ Nanosheets–Carbon Nanotubes for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 1587-1592.	13.7	800

#	Article	IF	CITATIONS
37	An ultrafast rechargeable aluminium-ion battery. Nature, 2015, 520, 324-328.	27.8	1,970
38	Reversibly Switching Bilayer Permeability and Release Modules of Photochromic Polymersomes Stabilized by Cooperative Noncovalent Interactions. Journal of the American Chemical Society, 2015, 137, 15262-15275.	13.7	245
39	A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Research, 2015, 8, 23-39.	10.4	1,201
40	Graphene Nanoribbons Under Mechanical Strain. Advanced Materials, 2015, 27, 303-309.	21.0	36
41	Facile synthesis of mesoporous nitrogen-doped graphene: An efficient methanol–tolerant cathodic catalyst for oxygen reduction reaction. Nano Energy, 2014, 3, 55-63.	16.0	183
42	Core solution: a strategy towards gold core/non-gold shell nanoparticles bearing strict DNA-valences for programmable nanoassembly. Chemical Science, 2014, 5, 1015-1020.	7.4	18
43	Semiconductors: A Unique Semiconductor-Metal-Graphene Stack Design to Harness Charge Flow for Photocatalysis (Adv. Mater. 32/2014). Advanced Materials, 2014, 26, 5578-5578.	21.0	4
44	Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature Communications, 2014, 5, 4695.	12.8	1,413
45	Topâ€Down Patterning and Selfâ€Assembly for Regular Arrays of Semiconducting Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2014, 26, 6151-6156.	21.0	42
46	Plasmonic micro-beads for fluorescence enhanced, multiplexed protein detection with flow cytometry. Chemical Science, 2014, 5, 4070-4075.	7.4	38
47	Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy and Environmental Science, 2014, 7, 2025.	30.8	265
48	High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation. Science, 2013, 342, 836-840.	12.6	630
49	Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nature Communications, 2013, 4, 1805.	12.8	976
50	An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, 2013, 135, 8452-8455.	13.7	2,498
51	An Integrated Peptide-Antigen Microarray on Plasmonic Gold Films for Sensitive Human Antibody Profiling. PLoS ONE, 2013, 8, e71043.	2.5	27
52	Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes. Journal of the American Chemical Society, 2012, 134, 15849-15857.	13.7	747
53	Caspases cleave and inhibit the microRNA processing protein DiGeorge Critical Region 8. Protein Science, 2012, 21, 797-808.	7.6	13
54	An ultrafast nickel–iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nature Communications, 2012, 3, 917.	12.8	347

Ming Gong

#	Article	IF	CITATIONS
55	Pd nanocrystals with single-, double-, and triple-cavities: facile synthesis and tunable plasmonic properties. Chemical Science, 2011, 2, 2392.	7.4	35
56	Copper-mediated synthesis of PdI2 colloidal spheres. Science China Chemistry, 2011, 54, 1027-1031.	8.2	4
57	Oleylamineâ€Mediated Shape Evolution of Palladium Nanocrystals. Angewandte Chemie - International Edition, 2011, 50, 6315-6319.	13.8	152
58	Shape-controlled CuCl crystallite catalysts for aniline coupling. Nano Research, 2010, 3, 174-179.	10.4	26
59	Reply to Comment on: "Nucleation and Growth of BaF _{<i>x</i>} Cl _{2â°'<i>x</i>} Nanorods― Chemistry - A European Journal, 2010, 16, 12528-12528.	3.3	0