
Fernanda M Da Cunha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3153603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial Calcium Transporters Regulate Autophagy. FASEB Journal, 2022, 36, .	0.2	ο
2	Unveiling the contribution of the reproductive system of individual Caenorhabditis elegans on oxygen consumption by single-point scanning electrochemical microscopy measurements. Analytica Chimica Acta, 2021, 1146, 88-97.	2.6	7
3	Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxidants and Redox Signaling, 2021, 35, 1016-1080.	2.5	13
4	Lipase-like 5 enzyme controls mitochondrial activity in response to starvation in Caenorhabditis elegans. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158539.	1.2	9
5	Lifespanâ€extending interventions enhance lipidâ€supported mitochondrial respiration in <i>Caenorhabditis elegans</i> . FASEB Journal, 2020, 34, 9972-9981.	0.2	8
6	Expression of human HSP27 in yeast extends replicative lifespan and uncovers a hormetic response. Biogerontology, 2020, 21, 559-575.	2.0	9
7	Brain Innate Immune Response in Diet-Induced Obesity as a Paradigm for Metabolic Influence on Inflammatory Signaling. Frontiers in Neuroscience, 2019, 13, 342.	1.4	13
8	Melatonin multiple effects on brown adipose tissue molecular machinery. Journal of Pineal Research, 2019, 66, e12549.	3.4	25
9	The physiological role of the free 20S proteasome in protein degradation: A critical review. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2948-2954.	1.1	21
10	Mitochondrial form, function and signalling in aging. Biochemical Journal, 2016, 473, 3421-3449.	1.7	30
11	Mitochondrial Retrograde Signaling: Triggers, Pathways, and Outcomes. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-10.	1.9	121
12	RTG1- and RTG2-dependent retrograde signaling controls mitochondrial activity and stress resistance in Saccharomyces cerevisiae. Free Radical Biology and Medicine, 2015, 81, 30-37.	1.3	27
13	Leucine supplementation improves regeneration of skeletal muscles from old rats. Experimental Gerontology, 2015, 72, 269-277.	1.2	33
14	Calorie Restriction Hysteretically Primes Aging Saccharomyces cerevisiae toward More Effective Oxidative Metabolism. PLoS ONE, 2013, 8, e56388.	1.1	25
15	Calorie restriction increases cerebral mitochondrial respiratory capacity in a NO•-mediated mechanism: Impact on neuronal survival. Free Radical Biology and Medicine, 2012, 52, 1236-1241.	1.3	54
16	Mitochondrial compartmentalization of redox processes. Free Radical Biology and Medicine, 2012, 52, 2201-2208.	1.3	69
17	Serum from Calorie-Restricted Rats Activates Vascular Cell eNOS through Enhanced Insulin Signaling Mediated by Adiponectin. PLoS ONE, 2012, 7, e31155.	1.1	17
18	Aging and calorie restriction modulate yeast redox state, oxidized protein removal, and the ubiquitin–proteasome system. Free Radical Biology and Medicine, 2011, 51, 664-670.	1.3	36

Fernanda M Da Cunha

#	Article	IF	CITATIONS
19	Long-term intermittent feeding, but not caloric restriction, leads to redox imbalance, insulin receptor nitration, and glucose intolerance. Free Radical Biology and Medicine, 2011, 51, 1454-1460.	1.3	57
20	Mild Mitochondrial Uncoupling as a Therapeutic Strategy. Current Drug Targets, 2011, 12, 783-789.	1.0	71
21	Yeast as a model to study mitochondrial mechanisms in ageing. Mechanisms of Ageing and Development, 2010, 131, 494-502.	2.2	40
22	Analysis of Intracellular Substrates and Products of Thimet Oligopeptidase in Human Embryonic Kidney 293 Cells. Journal of Biological Chemistry, 2009, 284, 14105-14116.	1.6	64
23	Intracellular Peptides as Natural Regulators of Cell Signaling. Journal of Biological Chemistry, 2008, 283, 24448-24459.	1.6	84
24	Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea. Journal of Ethnopharmacology, 2007, 110, 323-333.	2.0	190
25	Anti-inflammatory effects of compounds alpha-humulene and (â^')-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. European Journal of Pharmacology, 2007, 569, 228-236.	1.7	421
26	Substrate phosphorylation affects degradation and interaction to endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme. Biochemical and Biophysical Research Communications, 2006, 339, 520-525.	1.0	19
27	Caffeic Acid Derivatives: In Vitro and In Vivo Anti-inflammatory Properties. Free Radical Research, 2004, 38, 1241-1253.	1.5	153
28	Additional evidence for the anti-inflammatory and anti-allergic properties of the sesquiterpene polygodial. Life Sciences, 2001, 70, 159-169.	2.0	66