Hans K Carlson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3153599/publications.pdf

Version: 2024-02-01

41 papers

2,184 citations

20 h-index 315739 38 g-index

53 all docs 53
docs citations

53 times ranked 2678 citing authors

#	Article	IF	CITATIONS
1	The diversity and evolution of microbial dissimilatory phosphite oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
2	Mechanism Across Scales: A Holistic Modeling Framework Integrating Laboratory and Field Studies for Microbial Ecology. Frontiers in Microbiology, 2021, 12, 642422.	3.5	12
3	Functional genetics of human gut commensal Bacteroides thetaiotaomicron reveals metabolic requirements for growth across environments. Cell Reports, 2021, 34, 108789.	6.4	82
4	Editorial: Selective Controls on Microbial Energy Metabolisms: From the Microscale to the Macroscale. Frontiers in Microbiology, 2021, 12, 728705.	3.5	0
5	Genome-Wide Identification of Tomato Xylem Sap Fitness Factors for Three Plant-Pathogenic <i>Ralstonia</i> Species. MSystems, 2021, 6, e0122921.	3.8	7
6	Sulfate adenylyl transferase kinetics and mechanisms of metabolic inhibitors of microbial sulfate respiration. ISME Communications, 2021, 1, .	4.2	0
7	Tungstate Control of Microbial Sulfidogenesis and Souring of the Engineered Environment. Environmental Science & Environmental	10.0	6
8	Identification of a Novel Cobamide Remodeling Enzyme in the Beneficial Human Gut Bacterium Akkermansia muciniphila. MBio, 2020, 11 , .	4.1	18
9	Selective carbon sources influence the end products of microbial nitrate respiration. ISME Journal, 2020, 14, 2034-2045.	9.8	61
10	Identification of a parasitic symbiosis between respiratory metabolisms in the biogeochemical chlorine cycle. ISME Journal, 2020, 14, 1194-1206.	9.8	15
11	Resistance and Resilience of Sulfidogenic Communities in the Face of the Specific Inhibitor Perchlorate. Frontiers in Microbiology, 2019, 10, 654.	3.5	4
12	Adaptation of <i>Desulfovibrio alaskensis</i> G20 to perchlorate, a specific inhibitor of sulfate reduction. Environmental Microbiology, 2019, 21, 1395-1406.	3.8	14
13	Mechanisms and Monitoring of Oil Reservoir Souring Control by Nitrate or Perchlorate Injection. , 2019, , 1-25.		4
14	Oxidative Pathways of Deoxyribose and Deoxyribonate Catabolism. MSystems, 2019, 4, .	3.8	34
15	Native Plasmid-Encoded Mercury Resistance Genes Are Functional and Demonstrate Natural Transformation in Environmental Bacterial Isolates. MSystems, 2019, 4, .	3.8	6
16	The selective pressures on the microbial community in a metal-contaminated aquifer. ISME Journal, 2019, 13, 937-949.	9.8	56
17	Magic Pools: Parallel Assessment of Transposon Delivery Vectors in Bacteria. MSystems, 2018, 3, .	3.8	31
18	Mitigating Sulfidogenesis With Simultaneous Perchlorate and Nitrate Treatments. Frontiers in Microbiology, 2018, 9, 2305.	3.5	13

#	Article	IF	CITATIONS
19	Mutant phenotypes for thousands of bacterial genes of unknown function. Nature, 2018, 557, 503-509.	27.8	433
20	Dissimilatory Sulfate Reduction Under High Pressure by Desulfovibrio alaskensis G20. Frontiers in Microbiology, 2018, 9, 1465.	3.5	15
21	Functional Redundancy in Perchlorate and Nitrate Electron Transport Chains and Rewiring Respiratory Pathways to Alter Terminal Electron Acceptor Preference. Frontiers in Microbiology, 2018, 9, 376.	3.5	20
22	High-Throughput Screening To Identify Potent and Specific Inhibitors of Microbial Sulfate Reduction. Environmental Science & E	10.0	27
23	Microbial metal resistance and metabolism across dynamic landscapes: high-throughput environmental microbiology. F1000Research, 2017, 6, 1026.	1.6	25
24	System-Wide Adaptations of Desulfovibrio alaskensis G20 to Phosphate-Limited Conditions. PLoS ONE, 2016, 11, e0168719.	2.5	15
25	Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues. Journal of Biological Chemistry, 2016, 291, 9190-9202.	3.4	71
26	Monofluorophosphate Is a Selective Inhibitor of Respiratory Sulfate-Reducing Microorganisms. Environmental Science & Environme	10.0	69
27	Synthetic and Evolutionary Construction of a Chlorate-Reducing Shewanella oneidensis MR-1. MBio, 2015, 6, e00282-15.	4.1	13
28	GEMM-I riboswitches from <i>Geobacter</i> sense the bacterial second messenger cyclic AMP-GMP. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5383-5388.	7.1	119
29	Novel Mechanism for Scavenging of Hypochlorite Involving a Periplasmic Methionine-Rich Peptide and Methionine Sulfoxide Reductase. MBio, 2015, 6, e00233-15.	4.1	50
30	Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate. ISME Journal, 2015, 9, 1295-1305.	9.8	87
31	Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment. Frontiers in Microbiology, 2014, 5, 315.	3.5	103
32	Surfaceomics and surfaceâ€enhanced <scp>R</scp> aman spectroscopy of environmental microbes: Matching cofactors with redoxâ€active surface proteins. Proteomics, 2013, 13, 2761-2765.	2.2	3
33	Fe(II) Oxidation Is an Innate Capability of Nitrate-Reducing Bacteria That Involves Abiotic and Biotic Reactions. Journal of Bacteriology, 2013, 195, 3260-3268.	2.2	144
34	Surface multiheme <i>c</i> -type cytochromes from <i>Thermincola potens</i> and implications for respiratory metal reduction by Gram-positive bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1702-1707.	7.1	178
35	Bioelectrical redox cycling of anthraquinone-2,6-disulfonate coupled to perchlorate reduction. Energy and Environmental Science, 2012, 5, 7970.	30.8	19
36	Toward a Mechanistic Understanding of Anaerobic Nitrate-Dependent Iron Oxidation: Balancing Electron Uptake and Detoxification. Frontiers in Microbiology, 2012, 3, 57.	3.5	86

3

#	Article	IF	CITATIONS
37	Identification of a Perchlorate Reduction Genomic Island with Novel Regulatory and Metabolic Genes. Applied and Environmental Microbiology, 2011, 77, 7401-7404.	3.1	57
38	Use of a semisynthetic epitope to probe histidine kinase activity and regulation. Analytical Biochemistry, 2010, 397, 139-143.	2.4	28
39	Hâ€NOX regulation of câ€diâ€GMP metabolism and biofilm formation in <i>Legionella pneumophila</i> . Molecular Microbiology, 2010, 77, 930-942.	2.5	108
40	H-NOX–mediated nitric oxide sensing modulates symbiotic colonization by <i>Vibrio fischeri</i> Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8375-8380.	7.1	100
41	Novel Syn Intramolecular Pathway in Base-Catalyzed 1,2-Elimination Reactions of \hat{I}^2 -Acetoxy Esters. Journal of Organic Chemistry, 2007, 72, 793-798.	3.2	9