Umasish Jana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3153591/publications.pdf

Version: 2024-02-01

361413 395702 1,602 33 20 citations h-index papers

33 g-index 44 44 44 1615 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Iron(III)-Catalyzed Four-Component Coupling Reaction of 1,3-Dicarbonyl Compounds, Amines, Aldehydes, and Nitroalkanes: A Simple and Direct Synthesis of Functionalized Pyrroles. Journal of Organic Chemistry, 2010, 75, 1674-1683.	3.2	243
2	An FeCl3-catalyzed highly C3-selective Friedel–Crafts alkylation of indoles with alcohols. Tetrahedron Letters, 2007, 48, 7160-7163.	1.4	125
3	Iron-Catalyzed Synthesis of Functionalized 2 <i>H</i> -Chromenes via Intramolecular Alkyneâ°Carbonyl Metathesis. Journal of Organic Chemistry, 2011, 76, 3539-3544.	3.2	119
4	An efficient FeCl3-catalyzed amidation reaction of secondary benzylic and allylic alcohols with carboxamides or p-toluenesulfonamide. Tetrahedron Letters, 2008, 49, 858-862.	1.4	113
5	Efficient microwave-assisted synthesis of quinolines and dihydroquinolines under solvent-free conditions. Tetrahedron, 2003, 59, 813-819.	1.9	110
6	A simple and efficient FeCl3-catalyzed direct alkylation of active methylene compounds with benzylic and allylic alcohols under mild conditions. Tetrahedron Letters, 2007, 48, 4065-4069.	1.4	110
7	Synthesis of Substituted Phenanthrene by Iron(III)-Catalyzed Intramolecular Alkyne–Carbonyl Metathesis. Journal of Organic Chemistry, 2012, 77, 8780-8786.	3.2	77
8	An Efficient Ironâ€Catalyzed Carbon–Carbon Singleâ€Bond Cleavage via Retroâ€Claisen Condensation: A Mild and Convenient Approach to Synthesize a Variety of Esters or Ketones. European Journal of Organic Chemistry, 2010, 2010, 2861-2866.	2.4	73
9	Iron(III)â€Catalyzed Addition of Benzylic Alcohols to Aryl Alkynes – A New Synthesis of Substituted Aryl Ketones. European Journal of Organic Chemistry, 2008, 2008, 5798-5804.	2.4	69
10	FeCl3-catalyzed synthesis of functionally diverse dibenzo[b,f]oxepines and benzo[b]oxepines via alkyne–aldehyde metathesis. Organic and Biomolecular Chemistry, 2014, 12, 57-61.	2.8	55
11	Synthesis of Nitroalkenes Involving a Cooperative Catalytic Action of Iron(III) and Piperidine: A Oneâ€Pot Synthetic Strategy to 3â€Alkylindoles, 2 <i>H</i> à€Chromenes and <i>N</i> à€Arylpyrrole. European Journal of Organic Chemistry, 2013, 2013, 4823-4828.	2.4	51
12	New and Efficient Iron Halide Mediated Synthesis of Alkenyl Halides through Coupling of Alkynes and Alcohols. European Journal of Organic Chemistry, 2009, 2009, 2354-2359.	2.4	48
13	Fe-Catalyzed Novel Domino Isomerization/Cyclodehydration of Substituted 2-[(Indoline-3-ylidene)(methyl)]benzaldehyde Derivatives: An Efficient Approach toward Benzo[<i>b</i>]carbazole Derivatives. Organic Letters, 2014, 16, 2166-2169.	4.6	47
14	Efficient synthesis of functionalized dihydroquinolines, quinolines and dihydrobenzo[b]azepine via an iron(iii) chloride-catalyzed intramolecular alkyne–carbonyl metathesis of alkyne tethered 2-amino benzaldehyde/acetophenone derivatives. Organic and Biomolecular Chemistry, 2014, 12, 1759-1770.	2.8	44
15	Synthesis of Structurally Diverse Polyfunctional Pyrrolo[1,2â€ <i>a</i>]quinolines by Sequential Ironâ€Catalyzed Threeâ€Component Coupling and Goldâ€Catalyzed Hydroarylation Reactions. European Journal of Organic Chemistry, 2013, 2013, 6055-6061.	2.4	38
16	Synthesis of Fused Dibenzofuran Derivatives via Palladium-Catalyzed Domino C–C Bond Formation and Iron-Catalyzed Cycloisomerization/Aromatization. Journal of Organic Chemistry, 2016, 81, 1164-1174.	3.2	35
17	Highly efficient synthesis of polysubstituted fluorene via iron-catalyzed intramolecular Friedel–Crafts alkylation of biaryl alcohols. Tetrahedron Letters, 2012, 53, 5544-5547.	1.4	33
18	Inexpensive and Efficient Synthesis of Propargylic Substituted Active Methylene Compounds Catalyzed by FeCl3. Synthetic Communications, 2010, 41, 243-254.	2.1	25

#	Article	IF	CITATIONS
19	Fe(OTf) ₃ â€Catalyzed Aromatization of Substituted 3â€Methyleneindoline and BenzoÂfuran Derivatives: A Selective Route to Câ€3â€Alkylated Indoles and Benzofurans. European Journal of Organic Chemistry, 2015, 2015, 5513-5517.	2.4	25
20	Iron-Catalyzed 1,5-Enyne Cycloisomerization via 5- <i>Endo-Dig</i> Cyclization for the Synthesis of 3-(Inden-1-yl)indole Derivatives. Organic Letters, 2016, 18, 6512-6515.	4.6	23
21	Three-Component Coupling Synthesis of Diversely Substituted N-Aryl Pyrroles Catalyzed by Iron(III) Chloride. Synthetic Communications, 2013, 43, 1563-1570.	2.1	19
22	Catalytic Alkyne/Alkene-Carbonyl Metathesis: Towards the Development of Green Organic Synthesis. Current Green Chemistry, 2020, 7, 5-39.	1.1	18
23	Application of the Povarov Reaction in Biaryls under Iron Catalysis for the General Synthesis of Dibenzo[<i>a</i> , <i>c</i>]Acridines. Journal of Organic Chemistry, 2020, 85, 9281-9289.	3.2	16
24	Iron-catalyzed tandem carbon–carbon/carbon–oxygen bond formation/aromatization of 2′-alkynyl-biphenyl-2-carbinols: a new approach to the synthesis of substituted phenanthrenes. Tetrahedron Letters, 2015, 56, 312-315.	1.4	14
25	Efficient two-step synthesis of structurally diverse indolo[2,3- <i>b</i>)quinoline derivatives. Organic and Biomolecular Chemistry, 2019, 17, 2321-2325.	2.8	13
26	Tandem C-3/C-2 annulation of indole, benzofuran, and benzothiophene with 2-alkynyl benzylalcohol: an efficient approach to the diverse tetracyclic heteroazulene ring systems. Tetrahedron Letters, 2014, 55, 6188-6192.	1.4	11
27	Metal-Catalyzed Domino Synthesis of Benzophenanthridines and 6 <i>H</i> -Naphtho[2,3- <i>c</i>]-chromenes. Journal of Organic Chemistry, 2018, 83, 8139-8149.	3.2	11
28	Iron-catalyzed carboarylation of alkynes via activation of π-activated alcohols: rapid synthesis of substituted benzofused six-membered heterocycles. Organic and Biomolecular Chemistry, 2021, 19, 5155-5160.	2.8	8
29	DDQ/FeCl ₃ -mediated tandem oxidative carbon–carbon bond formation for the Synthesis of indole–fluorene hybrid molecules. Organic and Biomolecular Chemistry, 2021, 19, 906-910.	2.8	8
30	Ironâ€Catalyzed Functionalization of 3â€Benzylideneindoline Through Tandem Csp ² –Csp ³ Bond Formation/Isomerization with Ï€â€Activated Alcohols. European Journal of Organic Chemistry, 2020, 2020, 61-65.	2.4	7
31	Iron-Catalyzed Intramolecular Alkyne–Carbonyl Metathesis: A New Cyclization Strategy for the Synthesis of Benzocarbazole and Azepino[1,2-a]indole Derivatives. Synthesis, 2017, 49, 4205-4212.	2.3	6
32	Iron-catalyzed alkyne–carbonyl metathesis for the synthesis of 6,7-dihydro-5 <i>H</i> -dibenzo[<i>c</i> , <i>e</i>]azonines. Organic and Biomolecular Chemistry, 2021, 19, 10549-10553.	2.8	6
33	The synthesis of indole-3-carbinols (I3C) and their application to access unsymmetrical bis(3-indolyl)methanes (BIMs) bearing a quaternary sp ³ -carbon. Organic and Biomolecular Chemistry, 2022, 20, 5234-5238.	2.8	2