List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/315357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The SRCIN1/p140Cap adaptor protein negatively regulates the aggressiveness of neuroblastoma. Cell Death and Differentiation, 2020, 27, 790-807.	5.0	25
2	Transcriptome analysis defines myocardium gene signatures in children with ToF and ASD and reveals disease-specific molecular reprogramming in response to surgery with cardiopulmonary bypass. Journal of Translational Medicine, 2020, 18, 21.	1.8	11
3	Hypoxia Predicts Poor Prognosis in Neuroblastoma Patients and Associates with Biological Mechanisms Involved in Telomerase Activation and Tumor Microenvironment Reprogramming. Cancers, 2020, 12, 2343.	1.7	36
4	Exosomal microRNAs from Longitudinal Liquid Biopsies for the Prediction of Response to Induction Chemotherapy in High-Risk Neuroblastoma Patients: A Proof of Concept SIOPEN Study. Cancers, 2019, 11, 1476.	1.7	43
5	A Proteomic Analysis of GSD-1a in Mouse Livers: Evidence for Metabolic Reprogramming, Inflammation, and Macrophage Polarization. Journal of Proteome Research, 2019, 18, 2965-2978.	1.8	8
6	Characterization of high- and low-risk hepatocellular adenomas by magnetic resonance in an animal model of glycogen storage disease type 1A. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	4
7	PIPE-T: a new Galaxy tool for the analysis of RT-qPCR expression data. Scientific Reports, 2019, 9, 17550.	1.6	12
8	Genomic Amplifications and Distal 6q Loss: Novel Markers for Poor Survival in High-risk Neuroblastoma Patients. Journal of the National Cancer Institute, 2018, 110, 1084-1093.	3.0	73
9	Hypoxia Modifies the Transcriptome of Human NK Cells, Modulates Their Immunoregulatory Profile, and Influences NK Cell Subset Migration. Frontiers in Immunology, 2018, 9, 2358.	2.2	104
10	Heterogeneous MYCN amplification in neuroblastoma: a SIOP Europe Neuroblastoma Study. British Journal of Cancer, 2018, 118, 1502-1512.	2.9	28
11	<i>CHL1</i> gene acts as a tumor suppressor in human neuroblastoma. Oncotarget, 2018, 9, 25903-25921.	0.8	24
12	Favorable prognostic role of tropomodulins in neuroblastoma. Oncotarget, 2018, 9, 27092-27103.	0.8	7
13	Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization. Stem Cells Translational Medicine, 2017, 6, 1018-1028.	1.6	399
14	First Characterization of Human Amniotic Fluid Stem Cell Extracellular Vesicles as a Powerful Paracrine Tool Endowed with Regenerative Potential. Stem Cells Translational Medicine, 2017, 6, 1340-1355.	1.6	104
15	Regulation of Human Macrophage M1–M2 Polarization Balance by Hypoxia and the Triggering Receptor Expressed on Myeloid Cells-1. Frontiers in Immunology, 2017, 8, 1097.	2.2	208
16	Immunohistochemical analysis of PDK1, PHD3 and HIF-1α expression defines the hypoxic status of neuroblastoma tumors. PLoS ONE, 2017, 12, e0187206.	1.1	10
17	Artificial neural network classifier predicts neuroblastoma patients' outcome. BMC Bioinformatics, 2016, 17, 347.	1.2	32
18	Regulation of Langerhans cell functions in a hypoxic environment. Journal of Molecular Medicine, 2016, 94, 943-955.	1.7	10

#	Article	IF	CITATIONS
19	Analysis of the Expression and Single-Nucleotide Variant Frequencies of the Butyrophilin-like 2 Gene in Patients With Uveal Melanoma. JAMA Ophthalmology, 2016, 134, 1125.	1.4	7
20	The human amniotic fluid stem cell secretome effectively counteracts doxorubicin-induced cardiotoxicity. Scientific Reports, 2016, 6, 29994.	1.6	52
21	Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion. Cell Cycle, 2015, 14, 1426-1437.	1.3	2
22	The P2X7 receptor is a key modulator of the PI3K/GSK3β/VEGF signaling network: evidence in experimental neuroblastoma. Oncogene, 2015, 34, 5240-5251.	2.6	149
23	Deregulation of focal adhesion pathway mediated by miR-659-3p is implicated in bone marrow infiltration of stage M neuroblastoma patients. Oncotarget, 2015, 6, 13295-13308.	0.8	13
24	XTENS - A JSON-Based Digital Repository for Biomedical Data Management. Lecture Notes in Computer Science, 2015, , 123-130.	1.0	3
25	Identification of CD300a as a new hypoxia-inducible gene and a regulator of CCL20 and VEGF production by human monocytes and macrophages. Innate Immunity, 2014, 20, 721-734.	1.1	23
26	Development of hepatocellular adenomas and carcinomas in mice with liver-specific G6Pase-α deficiency. DMM Disease Models and Mechanisms, 2014, 7, 1083-1091.	1.2	20
27	Spermine metabolism and radiation-derived reactive oxygen species for future therapeutic implications in cancer: an additive or adaptive response. Amino Acids, 2014, 46, 487-498.	1.2	15
28	Use of Attribute Driven Incremental Discretization and Logic Learning Machine to build a prognostic classifier for neuroblastoma patients. BMC Bioinformatics, 2014, 15, S4.	1.2	19
29	A digital repository with an extensible data model for biobanking and genomic analysis management. BMC Genomics, 2014, 15, S3.	1.2	17
30	Identification of a novel mouse Dbl proto-oncogene splice variant: Evidence that SEC14 domain is involved in GEF activity regulation. Gene, 2014, 537, 220-229.	1.0	6
31	Hypoxia and Gene Expression. Cancer Drug Discovery and Development, 2014, , 91-119.	0.2	2
32	Robust Selection of Cancer Survival Signatures from High-Throughput Genomic Data Using Two-Fold Subsampling. PLoS ONE, 2014, 9, e108818.	1.1	6
33	Hypoxia downregulates the expression of activating receptors involved in <scp>NK</scp> â€cellâ€mediated target cell killing without affecting <scp>ADCC</scp> . European Journal of Immunology, 2013, 43, 2756-2764.	1.6	210
34	Chronic hypoxia reprograms human immature dendritic cells by inducing a proinflammatory phenotype and <scp>TREM</scp> â€l expression. European Journal of Immunology, 2013, 43, 949-966.	1.6	49
35	Logic Learning Machine creates explicit and stable rules stratifying neuroblastoma patients. BMC Bioinformatics, 2013, 14, S12.	1.2	20
36	The hypoxic environment reprograms the cytokine/chemokine expression profile of human mature dendritic cells. Immunobiology, 2013, 218, 76-89.	0.8	59

#	Article	IF	CITATIONS
37	Cytokines induce tight junction disassembly in airway cells via an EGFR-dependent MAPK/ERK1/2-pathway. Laboratory Investigation, 2012, 92, 1140-1148.	1.7	123
38	Dendritic cell reprogramming by the hypoxic environment. Immunobiology, 2012, 217, 1241-1249.	0.8	32
39	Design of a multi-signature ensemble classifier predicting neuroblastoma patients' outcome. BMC Bioinformatics, 2012, 13, S13.	1.2	15
40	The p53 Codon 72 Pro/Pro Genotype Identifies Poor-Prognosis Neuroblastoma Patients: Correlation with Reduced Apoptosis and Enhanced Senescence by the p53-72P Isoform. Neoplasia, 2012, 14, 634-IN21.	2.3	20
41	LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nature Genetics, 2012, 44, 1199-1206.	9.4	336
42	Treatment of newborn G6pc mice with bone marrow-derived myelomonocytes induces liver repair. Journal of Hepatology, 2011, 55, 1263-1271.	1.8	8
43	Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood, 2011, 117, 2625-2639.	0.6	119
44	High frequency of development of B cell lymphoproliferation and diffuse large B cell lymphoma in Dbl knock-in mice. Journal of Molecular Medicine, 2011, 89, 493-504.	1.7	6
45	Hypoxia: a double-edged sword of immunity. Journal of Molecular Medicine, 2011, 89, 657-665.	1.7	56
46	The Tumor Suppressor Hamartin Enhances Dbl Protein Transforming Activity through Interaction with Ezrin. Journal of Biological Chemistry, 2011, 286, 29973-29983.	1.6	10
47	Identification of Multiple Hypoxia Signatures in Neuroblastoma Cell Lines byl1-l2Regularization and Data Reduction. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-11.	3.0	10
48	A biology-driven approach identifies the hypoxia gene signature as a predictor of the outcome of neuroblastoma patients. Molecular Cancer, 2010, 9, 185.	7.9	85
49	Macrophage-inflammatory protein-3α/CCL-20 is transcriptionally induced by the iron chelator desferrioxamine in human mononuclear phagocytes through nuclear factor (NF)-κB. Molecular Immunology, 2010, 47, 685-693.	1.0	16
50	Induction of Epithelial Mesenchimal Transition and Vasculogenesis in the Lenses of Dbl Oncogene Transgenic Mice. PLoS ONE, 2009, 4, e7058.	1.1	3
51	The Hypoxic Synovial Environment Regulates Expression of Vascular Endothelial Growth Factor and Osteopontin in Juvenile Idiopathic Arthritis. Journal of Rheumatology, 2009, 36, 1318-1329.	1.0	31
52	Early response of gene clusters is associated with mouse lung resistance or sensitivity to cigarette smoke. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L418-L429.	1.3	21
53	The l1-l2 regularization framework unmasks the hypoxia signature hidden in the transcriptome of a set of heterogeneous neuroblastoma cell lines. BMC Genomics, 2009, 10, 474.	1.2	27
54	Bronchial Airway Epithelial Cell Damage Following Exposure to Cigarette Smoke Includes Disassembly of Tight Junction Components Mediated by the Extracellular Signal-Regulated Kinase 1/2 Pathway. Chest, 2009, 135, 1502-1512.	0.4	88

#	Article	IF	CITATIONS
55	Hypoxic synovial environment and expression of macrophage inflammatory protein 3γ/CCL20 in juvenile idiopathic arthritis. Arthritis and Rheumatism, 2008, 58, 1833-1838.	6.7	35
56	Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration. Immunobiology, 2008, 213, 733-749.	0.8	138
57	Hypoxia transcriptionally induces macrophage-inflammatory protein-3α/CCL-20 in primary human mononuclear phagocytes through nuclear factor (NF)-κB. Journal of Leukocyte Biology, 2008, 83, 648-662.	1.5	46
58	Human dendritic cells differentiated in hypoxia down-modulate antigen uptake and change their chemokine expression profile. Journal of Leukocyte Biology, 2008, 84, 1472-1482.	1.5	88
59	Synergystic induction of HIF-1α transcriptional activity by hypoxia and lipopolysaccharide in macrophages. Cell Cycle, 2008, 7, 232-241.	1.3	58
60	Transcriptome of Hypoxic Immature Dendritic Cells: Modulation of Chemokine/Receptor Expression. Molecular Cancer Research, 2008, 6, 175-185.	1.5	94
61	Topotecan inhibits vascular endothelial growth factor production and angiogenic activity induced by hypoxia in human neuroblastoma by targeting hypoxia-inducible factor-11± and -21±. Molecular Cancer Therapeutics, 2008, 7, 1974-1984.	1.9	73
62	Hypoxia inhibits Moloney murine leukemia virus expression in activated macrophages. Journal of Leukocyte Biology, 2007, 81, 528-538.	1.5	10
63	Gα13 Regulation of Proto-Dbl Signaling. Cell Cycle, 2007, 6, 2058-2070.	1.3	13
64	Induction of Macrophage Glutamine: Fructose-6-Phosphate Amidotransferase Expression by Hypoxia and by Picolinic Acid. International Journal of Immunopathology and Pharmacology, 2007, 20, 47-58.	1.0	33
65	Tryptophan metabolism and non-hypoxic induction of hypoxia-inducible factor (HIF). International Congress Series, 2007, 1304, 241-249.	0.2	1
66	Normalization of low-density microarray using external spike-in controls: analysis of macrophage cell lines expression profile. BMC Genomics, 2007, 8, 17.	1.2	9
67	Growth Arrest-Inducing Genes Are Activated in Dbl-Transformed Mouse Fibroblasts. Gene Expression, 2006, 13, 155-165.	0.5	1
68	Inhibition of PI3K induces Rac Activation and Membrane Ruffling in Proto-Dbl Expressing Cells. Cell Cycle, 2006, 5, 2657-2665.	1.3	5
69	Hypoxia Modifies the Transcriptome of Primary Human Monocytes: Modulation of Novel Immune-Related Genes and Identification Of CC-Chemokine Ligand 20 as a New Hypoxia-Inducible Gene. Journal of Immunology, 2006, 177, 1941-1955.	0.4	189
70	Newborn liver gene transfer by an HIV-2-based lentiviral vector. Gene Therapy, 2005, 12, 803-814.	2.3	13
71	Constitutively Active Cdc42 Mutant Confers Growth Disadvantage in Cell Transformation. Cell Cycle, 2005, 4, 1675-1682.	1.3	24
72	Double Mechanism for Apical Tryptophan Depletion in Polarized Human Bronchial Epithelium. Journal of Immunology, 2004, 173, 542-549.	0.4	20

#	Article	IF	CITATIONS
73	Induction of Apoptosis by Flavopiridol in Human Neuroblastoma Cells Is Enhanced under Hypoxia and Associated With N-myc Proto-oncogene Down-Regulation. Clinical Cancer Research, 2004, 10, 8704-8719.	3.2	17
74	Hypoxia Selectively Inhibits Monocyte Chemoattractant Protein-1 Production by Macrophages. Journal of Immunology, 2004, 172, 1681-1690.	0.4	84
75	Picolinic acid- or desferrioxamine-inducible autocrine activation of macrophages engineered to produce IFNÎ3: an approach for gene therapy. Gene Therapy, 2004, 11, 560-568.	2.3	8
76	Hypoxia inhibits the expression of the CCR5 chemokine receptor in macrophages. Cellular Immunology, 2004, 228, 1-7.	1.4	57
77	Antifungal activity of macrophages engineered to produce IFNÎ ³ : inducibility by picolinic acid. Medical Microbiology and Immunology, 2003, 192, 71-78.	2.6	12
78	The signature motif in human glucose-6-phosphate transporter is essential for microsomal transport of glucose-6-phosphate. Human Genetics, 2003, 112, 430-433.	1.8	4
79	Macrophage Activating Properties of The Tryptophan Catabolite Picolinic Acid. Advances in Experimental Medicine and Biology, 2003, 527, 55-65.	0.8	33
80	Antagonistic effect of picolinic acid and interferon-Î ³ on macrophage inflammatory protein-1α/β production. Cellular Immunology, 2002, 220, 70-80.	1.4	14
81	Flavopiridol inhibits vascular endothelial growth factor production induced by hypoxia or picolinic acid in human neuroblastoma. International Journal of Cancer, 2002, 99, 658-664.	2.3	45
82	Regulation of taurine transport in murine macrophages. Amino Acids, 2001, 21, 151-160.	1.2	10
83	New high-performance liquid chromatographic method for the detection of picolinic acid in biological fluids. Biomedical Applications, 2001, 751, 61-68.	1.7	49
84	Generation of high-titer retroviral vector-producing macrophages as vehicles for in vivo gene transfer. Gene Therapy, 2001, 8, 431-441.	2.3	19
85	Engineering of Macrophages to Produce IFN-Î ³ in Response to Hypoxia. Journal of Immunology, 2001, 166, 5374-5380.	0.4	49
86	The Tryptophan Catabolite Picolinic Acid Selectively Induces the Chemokines Macrophage Inflammatory Protein-11 \pm and -11 ² in Macrophages. Journal of Immunology, 2000, 164, 3283-3291.	0.4	108
87	Divergent effects of dithiocarbamates on AP-1-containing and AP-1-less NFAT sites. European Journal of Immunology, 1999, 29, 1194-1201.	1.6	20
88	Flavopiridol, a protein kinase inhibitor, down-regulates hypoxic induction of vascular endothelial growth factor expression in human monocytes. Cancer Research, 1999, 59, 5433-7.	0.4	102
89	An electrogenic amino acid transporter in the apical membrane of cultured human bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L917-L923.	1.3	31
90	Functional Requirement of the Hypoxia-responsive Element in the Activation of the Inducible Nitric Oxide Synthase Promoter by the Iron Chelator Desferrioxamine. Journal of Biological Chemistry, 1997, 272, 12236-12243.	1.6	186

#	Article	IF	CITATIONS
91	The Csk-like proteins Lsk, Hyl, and Matk represent the same Csk homologous kinase (Chk) and are regulated by stem cell factor in the megakaryoblastic cell line MO7e. Growth Factors, 1997, 14, 103-115.	0.5	19
92	Activation of Human Immunodeficiency Virus Long Terminal Repeat by Arachidonic Acid. Free Radical Biology and Medicine, 1997, 22, 195-199.	1.3	5
93	Functional role for the myeloid differentiation antigen CD14 in the activation of human monocytes by IL-2. Journal of Immunology, 1997, 159, 2922-31.	0.4	21
94	Immunobiology of Picolinic Acid. Advances in Experimental Medicine and Biology, 1996, 398, 135-141.	0.8	20
95	Nuclear Factor kB Is Activated by Arachidonic Acid but Not by Eicosapentaenoic Acid. Biochemical and Biophysical Research Communications, 1996, 229, 643-647.	1.0	173
96	Regulation of inducible nitric oxide synthase expression in IFN-gamma-treated murine macrophages cultured under hypoxic conditions. Journal of Immunology, 1996, 157, 2638-44.	0.4	67
97	Interleukin-2 and human monocyte activation. Journal of Leukocyte Biology, 1995, 57, 13-19.	1.5	76
98	Leukemia inhibitory factor induces interleukin-8 and monocyte chemotactic and activating factor in human monocytes: differential regulation by interferon-gamma. Blood, 1995, 86, 1961-1967.	0.6	32
99	Regulation of JAK3 expression in human monocytes: phosphorylation in response to interleukins 2, 4, and 7 Journal of Experimental Medicine, 1995, 181, 1425-1431.	4.2	118
100	A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter Journal of Experimental Medicine, 1995, 182, 1683-1693.	4.2	595
101	IL-4 inhibits IL-2-induced tumoricidal activity and secretory functions of human monocytes. Modulation of IL-2 binding and IL-2 receptor beta gamma chain expression. Journal of Immunology, 1995, 155, 1411-9.	0.4	11
102	Interferon-gamma upregulates interleukin-8 gene expression in human monocytic cells by a posttranscriptional mechanism. Blood, 1994, 83, 537-542.	0.6	51
103	Interleukin-4 inhibits indoleamine 2,3-dioxygenase expression in human monocytes. Blood, 1994, 83, 1408-1411.	0.6	143
104	Regulation by interleukin-2 (IL-2) and interferon gamma of IL-2 receptor gamma chain gene expression in human monocytes. Blood, 1994, 83, 2995-3002.	0.6	55
105	IL-4 and IL-13 induce Lsk, a Csk-like tyrosine kinase, in human monocytes Journal of Experimental Medicine, 1994, 180, 2383-2388.	4.2	30
106	LPS-inducible nuclear factor in human monocytes that binds the negative regulatory element of the HIV LTR. Journal of Leukocyte Biology, 1994, 56, 21-26.	1.5	6
107	Regulation of nitric-oxide synthase mRNA expression by interferon-gamma and picolinic acid Journal of Biological Chemistry, 1994, 269, 8128-8133.	1.6	105
108	Interleukin-4 inhibits indoleamine 2,3-dioxygenase expression in human monocytes. Blood, 1994, 83, 1408-1411.	0.6	5

#	Article	IF	CITATIONS
109	Interferon-gamma upregulates interleukin-8 gene expression in human monocytic cells by a posttranscriptional mechanism. Blood, 1994, 83, 537-542.	0.6	5
110	Prostaglandins inhibit lipoprotein lipase gene expression in macrophages. Immunology, 1994, 81, 605-10.	2.0	11
111	Regulation of nitric-oxide synthase mRNA expression by interferon-gamma and picolinic acid. Journal of Biological Chemistry, 1994, 269, 8128-33.	1.6	85
112	Interleukin-4 inhibits indoleamine 2,3-dioxygenase expression in human monocytes. Blood, 1994, 83, 1408-11.	0.6	43
113	The gamma subunit of the interleukin-2 receptor is expressed in human monocytes and modulated by interleukin-2, interferon gamma, and transforming growth factor beta 1. Blood, 1994, 83, 3462-7.	0.6	6
114	Pleiotropic Effects of Transforming Growth Factor-? on Cells of the Immune System. Annals of the New York Academy of Sciences, 1993, 685, 488-500.	1.8	79
115	IL-2 up-regulates but IFN-gamma suppresses IL-8 expression in human monocytes. Journal of Immunology, 1993, 151, 2725-32.	0.4	60
116	Selective transformation of host lymphocytes in vivo by retrovirus-producing macrophages. Journal of Immunology, 1993, 150, 278-89.	0.4	2
117	Picolinic acid, a catabolite of L-tryptophan, is a costimulus for the induction of reactive nitrogen intermediate production in murine macrophages. Journal of Immunology, 1993, 150, 4031-40.	0.4	43
118	Inhibition of proliferation of retrovirus-immortalized macrophages by LPS and IFN-Î3: Possible autocrine down-regulation of cell growth by induction of IL1 and TNF. Biotherapy (Dordrecht, Netherlands), 1992, 4, 267-276.	0.7	4
119	Ribosomal RNA Metabolism in Macrophages. Current Topics in Microbiology and Immunology, 1992, 181, 209-237.	0.7	4
120	Regulation of IL-2 receptor subunit genes in human monocytes. Differential effects of IL-2 and IFN-gamma. Journal of Immunology, 1992, 149, 2961-8.	0.4	21
121	Tumor necrosis factor-alpha-dependent production of reactive nitrogen intermediates mediates IFN-gamma plus IL-2-induced murine macrophage tumoricidal activity. Journal of Immunology, 1992, 149, 3290-6.	0.4	95
122	IL-2 induces IL-6 production in human monocytes. Journal of Immunology, 1992, 148, 795-800.	0.4	37
123	Expression of protein kinase C-alpha (PKC-α) and MYCN mRNAs in human neuroblastoma cells and modulation during morphological differentiation induced by retinoic acid. FEBS Letters, 1991, 280, 221-224.	1.3	29
124	c-fos mRNA expression in macrophages is downregulated by interferon-gamma at the posttranscriptional level Molecular and Cellular Biology, 1991, 11, 2718-2722.	1.1	32
125	Tumoricidal alveolar macrophage and tumor infiltrating macrophage cell lines. International Journal of Cancer, 1991, 49, 296-302.	2.3	33
126	c-fos mRNA expression in macrophages is downregulated by interferon-gamma at the posttranscriptional level. Molecular and Cellular Biology, 1991, 11, 2718-2722.	1.1	20

LUIGI VARESIO

#	Article	IF	CITATIONS
127	IL-4 inhibits the costimulatory activity of IL-2 or picolinic acid but not of lipopolysaccharide on IFN-gamma-treated macrophages. Journal of Immunology, 1991, 147, 3809-14.	0.4	16
128	Expression of human immunodeficiency virus long terminal repeat in the human promonocyte cell line U937: Effect of endotoxin and cytokines. Cellular Immunology, 1990, 129, 513-518.	1.4	12
129	Expression and role of p75 interleukin 2 receptor on human monocytes Journal of Experimental Medicine, 1990, 171, 1821-1826.	4.2	104
130	Macrophage-colony-stimulating factor (CSF-1) induces proliferation, chemotaxis, and reversible monocytic differentiation in myeloid progenitor cells transfected with the human c-fms/CSF-1 receptor cDNA Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 5613-5617.	3.3	103
131	Immortalization of macrophages from mouse bone marrow and fetal liver. Experimental Cell Research, 1990, 188, 192-198.	1.2	18
132	The specific inhibitor of protein kinase C, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7), induces morphological change and cell differentiation of human neural crest-derived cell lineages. FEBS Letters, 1990, 269, 4-6.	1.3	17
133	Augmentation of GG2EE macrophage cell line-mediated anti-Candida activity by gamma interferon, tumor necrosis factor, and interleukin-1. Infection and Immunity, 1990, 58, 1073-1077.	1.0	62
134	Picolinic acid, a catabolite of tryptophan, as the second signal in the activation of IFN-gamma-primed macrophages. Journal of Immunology, 1990, 145, 4265-71.	0.4	47
135	Characterization of IL-2 receptor expression and function on murine macrophages. Journal of Immunology, 1990, 145, 1719-26.	0.4	43
136	Lipopolysaccharide, but not IFN-gamma, down-regulates c-fms mRNA proto-oncogene expression in murine macrophages. Journal of Immunology, 1990, 144, 3574-80.	0.4	22
137	IL-2 enhances c-fms expression in human monocytes. Journal of Immunology, 1990, 145, 1137-43.	0.4	18
138	Morphological change and cellular differentiation induced by cisplatin in human neuroblastoma cell lines. Cancer Chemotherapy and Pharmacology, 1989, 25, 114-116.	1.1	16
139	Heterogeneity of Hematopoietic Cells Immortalized by v-myc/v-raf Recombinant Retrovirus Infection of Bone Marrow or Fetal Liver. Journal of the National Cancer Institute, 1989, 81, 1492-1496.	3.0	120
140	Generation of macrophage cell line from fresh bone marrow cells with a myc/raf recombinant retrovirus. Cancer Biochemistry Biophysics, 1989, 10, 303-17.	0.1	29
141	Cytokine gene expression during the generation of human lymphokine-activated killer cells: early induction of interleukin 1 beta by interleukin 2. Cancer Research, 1989, 49, 940-4.	0.4	43
142	In vitro proliferation of human large granular lymphocytes withv-raf/v-myc recombinant retrovirus. Experientia, 1988, 44, 1013-1015.	1.2	0
143	Tumor formation by a murine macrophage cell line immortalized in vitro by v-raf and v-myc oncogenes. Cancer Immunology, Immunotherapy, 1988, 27, 109-13.	2.0	7
144	Differential in vitro modulation of suppressor and antitumor functions of mouse macrophages by lymphokines and/or endotoxin. Cellular Immunology, 1988, 114, 282-292.	1.4	10

#	Article	IF	CITATIONS
145	Harvey-ras, but Not Kirsten or N-ras, Inhibits the Induction of C-fos Expression. Annals of the New York Academy of Sciences, 1988, 551, 361-362.	1.8	0
146	Protein kinase C inhibitors block the activation of macrophages by IFN-beta but not by IFN-gamma. Journal of Immunology, 1988, 140, 1259-63.	0.4	29
147	Inhibition of retroviral mRNA expression in the murine macrophage cell line GG2EE by biologic response modifiers. Journal of Immunology, 1988, 141, 2153-7.	0.4	16
148	Characterization of a murine monoclonal antibody that detects a C-terminal fragment of the raf oncogene product. Journal of Immunology, 1988, 140, 3528-33.	0.4	1
149	Augmentation of c-fos mRNA expression by activators of protein kinase C in fresh, terminally differentiated resting macrophages Molecular and Cellular Biology, 1987, 7, 595-599.	1.1	47
150	Activation of double-stranded RNA dependent protein kinase by ribosomal RNA precursors. Cytotechnology, 1987, 1, 57-60.	0.7	0
151	Generation of a murine monoclonal antibody that detects the fos oncogene product. Analytical Biochemistry, 1987, 161, 109-116.	1.1	18
152	A murine macrophage cell line, immortalized by v-raf and v-myc oncogenes, exhibits normal macrophage functions. European Journal of Immunology, 1987, 17, 1491-1498.	1.6	81
153	Regulation of bone marrow cell survival in short-term cultures: A new macrophage function. Cellular Immunology, 1987, 104, 334-342.	1.4	5
154	Augmentation of c- <i>fos</i> mRNA Expression by Activators of Protein Kinase C in Fresh, Terminally Differentiated Resting Macrophages. Molecular and Cellular Biology, 1987, 7, 595-599.	1.1	16
155	Interferon-alpha, -beta, and -gamma augment the levels of rRNA precursors in peritoneal macrophages but not in macrophage cell lines and fibroblasts. Journal of Immunology, 1987, 139, 805-12.	0.4	17
156	Selective inhibition of 28S ribosomal RNA in macrophages activated by interferon-gamma or -beta. Journal of Immunology, 1987, 138, 2332-7.	0.4	9
157	Antiproliferative activity of picolinic acid due to macrophage activation. Drugs Under Experimental and Clinical Research, 1987, 13, 607-14.	0.3	9
158	Erythroid differentiation and modulation of c-myc expression induced by antineoplastic drugs in the human leukemic cell line K562. Cancer Research, 1987, 47, 4544-7.	0.4	31
159	Molecular bases for macrophage activation. Annales De L'Institut Pasteur Immunologie, 1986, 137, 235-240.	0.9	6
160	Comparison of Five Short-Term Assays That Measure Nonspecific Cytotoxicity Mediated to Tumor Cells by Activated Macrophages. Journal of Leukocyte Biology, 1986, 40, 801-813.	1.5	19
161	Posttranscriptional control of human gamma interferon gene expression in transfected mouse fibroblasts Molecular and Cellular Biology, 1986, 6, 2253-2256.	1.1	29
162	Selective augmentation by recombinant interferon-gamma of the intracellular content of S-adenosylmethionine in murine macrophages. Journal of Immunology, 1986, 136, 2596-604.	0.4	5

#	Article	IF	CITATIONS
163	The Strain of Mouse and Assay Conditions Influence Whether MulFN- <i>γ</i> Primes or Activates Macrophages for Tumor Cell Killing. Journal of Leukocyte Biology, 1985, 37, 475-479.	1.5	24
164	Selective immortalization of murine macrophages from fresh bone marrow by a raf/myc recombinant murine retrovirus. Nature, 1985, 318, 667-670.	13.7	237
165	Imbalanced accumulation of ribosomal RNA in macrophages activated in vivo or in vitro to a cytolytic stage. Journal of Immunology, 1985, 134, 1262-7.	0.4	19
166	In Vivo Activation of Macrophages but not Natural Killer Cells by Picolinic Acid (Pla). Immunopharmacology and Immunotoxicology, 1984, 6, 291-304.	0.8	22
167	[30] Depletion of macrophages from heterogeneous cell populations by the use of carbonyl iron. Methods in Enzymology, 1984, 108, 307-313.	0.4	10
168	Lymphokines inhibit macrophage RNA synthesis. Cellular Immunology, 1984, 84, 51-64.	1.4	7
169	Role of protein synthesis in the activation of cytotoxic mouse macrophages by lymphokines. Cellular Immunology, 1984, 85, 15-24.	1.4	12
170	Down regulation of RNA labeling as a selective marker for cytotoxic but not suppressor macrophages. Journal of Immunology, 1984, 132, 2683-5.	0.4	11
171	Potent activation of mouse macrophages by recombinant interferon-gamma. Cancer Research, 1984, 44, 4465-9.	0.4	73
172	Requirement for protein synthesis for induction of macrophage tumoricidal activity by IFN-alpha and IFN-beta but not by IFN-gamma. Journal of Immunology, 1984, 132, 3226-8.	0.4	18
173	RNA synthesis in activated macrophages I. Poly(I) · poly(C)-induced triggering of cytolytic activity is associated with decrease in RNA synthesis. European Journal of Immunology, 1983, 13, 959-964.	1.6	8
174	Selective inhibition by monosaccharides of tumor cell cytotoxicity mediated by mouse macrophages, macrophage-like cell lines, and natural killer cells. International Journal of Cancer, 1983, 31, 373-379.	2.3	33
175	Suppressor Cells and Cancer: Inhibition of Immune Functions by Macrophages. , 1983, , 217-252.		10
176	Interferon Activates Macrophages to Produce Plasminogen Activator. Journal of Interferon Research, 1982, 2, 377-386.	1.2	27
177	Interferon-independent, lectin-induced augmentation of murine natural killer cell activity. International Journal of Cancer, 1982, 29, 299-307.	2.3	15
178	Suppressor macrophages in tumor-bearing mice. Inconsistency betweenin vivo andin vitro findings?. International Journal of Cancer, 1982, 29, 695-698.	2.3	10
179	Activation of Tumoricidal and/or Suppressor Macrophages: Different Stimulatory Signals Trigger Either Function both in Vivo and In Vitro. Advances in Experimental Medicine and Biology, 1982, 155, 487-492.	0.8	3
180	SUPPRESSION OF MURINE NATURAL KILLER CELL ACTIVITY BY NORMAL PERITONEAL MACROPHAGES. , 1982, , 535-540.		7

LUIGI VARESIO

#	Article	IF	CITATIONS
181	Suppression of lymphokine production: II. Macrophage-dependent inhibition of production of macrophage activating factor. Cellular Immunology, 1981, 63, 279-292.	1.4	15
182	Metabolic requirements for the in vitro augmentation of mouse natural killer activity by interferon. Cellular Immunology, 1981, 58, 49-60.	1.4	29
183	Microsystem to Evaluate the Incorporation of3H-Uridine in Macrophage RNA. Immunological Investigations, 1981, 10, 577-589.	0.9	3
184	Systemic andin situ natural killer and suppressor cell activities in mice bearing progressively growing murine sarcoma-virus-induced tumors. International Journal of Cancer, 1981, 27, 243-248.	2.3	44
185	In vitro induction of tumoricidal and suppressor macrophages by lymphokines: possible feedback regulation. Journal of Immunology, 1981, 126, 2123-8.	0.4	17
186	Activation of murine macrophages. I. Different pattern of activation by poly I:C than by lymphokine or LPS. Journal of Immunology, 1981, 127, 58-63.	0.4	36
187	A microsystem to evaluate the synthesis of [3H]leucine labeled proteins by macrophages. Journal of Immunological Methods, 1980, 33, 231-238.	0.6	3
188	Endotoxin requirement for macrophage activation by lymphokines in a rapid microcytotoxicity assay. Journal of Immunological Methods, 1980, 37, 225-232.	0.6	33
189	A microsystem to evaluate the synthesis of [3H]leucine labeled proteins by macrophages. Journal of Immunological Methods, 1980, 33, 231-238.	0.6	7
190	Suppression of lymphokine production. Cellular Immunology, 1980, 56, 16-28.	1.4	26
191	The macrophage as the social interconnection within the immune system. Developmental and Comparative Immunology, 1980, 4, 11-19.	1.0	22
192	Macrophages as Regulators of Immune Responses Against Tumors. Advances in Experimental Medicine and Biology, 1980, 121B, 361-379.	0.8	29
193	Immunologic Reactivity of Lymphoid Cells in Tumors. , 1980, 10, 61-78.		15
194	Mechanism of lymphocyte activation. II. Requirements for macromolecular synthesis in the production of lymphokines. Journal of Immunology, 1980, 125, 2810-7.	0.4	28
195	Regulation of lymphocyte activation: macrophage-dependent suppression of T lymphocyte protein synthesis. Journal of Immunology, 1980, 125, 1694-701.	0.4	16
196	Mechanisms of lymphocyte activation: linkage between early protein synthesis and late lymphocyte proliferation. Journal of Immunology, 1980, 124, 2288-94.	0.4	24
197	Suppression of lymphokine production by macrophages infiltrating murine virus-induced tumors. International Journal of Cancer, 1979, 24, 97-102.	2.3	36
198	Enhancement versus tumor resistance induced by different levels of immunodepression in BALB/c mice with protozoan infections. European Journal of Cancer, 1979, 15, 27-33.	1.0	2

#	Article	IF	CITATIONS
199	Suppression of proliferative response and lymphokine production during the progression of a spontaneous tumor. Cancer Research, 1979, 39, 4983-8.	0.4	30
200	RNA in amplification of the immunological response. Journal of Theoretical Biology, 1975, 51, 383-392.	0.8	1
201	The effect of cytochalasin B, colchicine and vinblastine on the adhesion of Trichomonas vaginalis to glass surfaces. International Journal for Parasitology, 1975, 5, 57-61.	1.3	18