Xia Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3153542/publications.pdf

Version: 2024-02-01

		361045	253896
59	2,149	20	43
papers	citations	h-index	g-index
60	60	60	2404
60	60	60	2494
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Lessons drawn from China and South Korea for managing COVID-19 epidemic: Insights from a comparative modeling study. ISA Transactions, 2022, 124, 164-175.	3.1	24
2	A delayed diffusive HBV model with nonlinear incidence and CTL immune response. Mathematical Methods in the Applied Sciences, 2022, 45, 11930-11961.	1.2	3
3	Assessing effects of reopening policies on COVID-19 pandemic in Texas with a data-driven transmission model. Infectious Disease Modelling, 2021, 6, 461-473.	1.2	8
4	Effects of medical resource capacities and intensities of public mitigation measures on outcomes of COVID-19 outbreaks. BMC Public Health, 2021, 21, 605.	1.2	19
5	The Epidemic Risk of Dengue Fever in Japan: Climate Change and Seasonality. Canadian Journal of Infectious Diseases and Medical Microbiology, 2021, 2021, 1-13.	0.7	4
6	A delayed reaction–diffusion viral infection model with nonlinear incidences and cell-to-cell transmission. International Journal of Biomathematics, 2021, 14, .	1.5	4
7	Evidence for a Causal Relationship between the Solar Cycle and Locust Abundance. Agronomy, 2021, 11, 69.	1.3	8
8	An Age-Structured Model of HIV Latent Infection with Two Transmission Routes: Analysis and Optimal Control. Complexity, 2020, 2020, 1-22.	0.9	2
9	Impact of Hospital Bed Shortages on the Containment of COVID-19 in Wuhan. International Journal of Environmental Research and Public Health, 2020, 17, 8560.	1.2	30
10	Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions. Journal of Clinical Medicine, 2020, 9, 462.	1.0	1,048
11	Threshold dynamics of an HIV infection model with two distinct cell subsets. Applied Mathematics Letters, 2020, 103, 106242.	1.5	6
12	Asymptotic analysis of a vector-borne disease model with the age of infection. Journal of Biological Dynamics, 2020, 14, 332-367.	0.8	12
13	Evaluation and prediction of the COVID-19 variations at different input population and quarantine strategies, a case study in Guangdong province, China. International Journal of Infectious Diseases, 2020, 95, 231-240.	1.5	56
14	Phase-adjusted estimation of the COVID-19 outbreak in South Korea under multi-source data and adjustment measures: a modelling study. Mathematical Biosciences and Engineering, 2020, 17, 3637-3648.	1.0	10
15	Global dynamics of a delayed diffusive virus infection model with cell-mediated immunity and cell-to-cell transmission. Mathematical Biosciences and Engineering, 2020, 17, 4678-4705.	1.0	7
16	A general model of hormesis in biological systems and its application to pest management. Journal of the Royal Society Interface, 2019, 16, 20190468.	1.5	29
17	Global dynamics of a cholera model with age structures and multiple transmission modes. International Journal of Biomathematics, 2019, 12, 1950051.	1.5	5
18	A combination of climatic conditions determines major within-season dengue outbreaks in Guangdong Province, China. Parasites and Vectors, 2019, 12, 45.	1.0	18

#	Article	IF	Citations
19	HIV low viral load persistence under treatment: Insights from a model of cell-to-cell viral transmission. Applied Mathematics Letters, 2019, 94, 44-51.	1.5	22
20	Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays. Mathematical Biosciences and Engineering, 2019, 16, 2587-2612.	1.0	21
21	Global dynamics of non-smooth Filippov pest-natural enemy system with constant releasing rate. Mathematical Biosciences and Engineering, 2019, 16, 7327-7361.	1.0	13
22	Global dynamics of a vector-borne disease model with infection ages and general incidence rates. Computational and Applied Mathematics, 2018, 37, 4055-4080.	1.3	12
23	Dynamics of an ageâ€structured hostâ€vector model for malaria transmission. Mathematical Methods in the Applied Sciences, 2018, 41, 1966-1987.	1.2	12
24	Measuring the impact of air pollution on respiratory infection risk in China. Environmental Pollution, 2018, 232, 477-486.	3.7	59
25	An age-structured epidemic model with waning immunity and general nonlinear incidence rate. International Journal of Biomathematics, 2018, 11, 1850069.	1.5	8
26	An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences and Engineering, 2018, 15, 1099-1116.	1.0	5
27	Analysis of HIV models with two time delays. Journal of Biological Dynamics, 2017, 11, 40-64.	0.8	30
28	Ageâ€Structured Withinâ€Host HIV Dynamics with Multiple Target Cells. Studies in Applied Mathematics, 2017, 138, 43-76.	1.1	22
29	Data informed analysis of 2014 dengue fever outbreak in Guangzhou: Impact of multiple environmental factors and vector control. Journal of Theoretical Biology, 2017, 416, 161-179.	0.8	6
30	Cumulative effects of incorrect use of pesticides can lead to catastrophic outbreaks of pests. Chaos, Solitons and Fractals, 2017, 100, 7-19.	2.5	7
31	Influence of raltegravir intensification on viral load and 2-LTR dynamics in HIV patients on suppressive antiretroviral therapy. Journal of Theoretical Biology, 2017, 416, 16-27.	0.8	20
32	Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission. Journal of Biological Dynamics, 2017, 11, 455-483.	0.8	75
33	A Holling Type II Pest and Natural Enemy Model with Density Dependent IPM Strategy. Mathematical Problems in Engineering, 2017, 2017, 1-12.	0.6	5
34	A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations. Journal of Theoretical Biology, 2016, 411, 27-36.	0.8	36
35	Dynamics of an HIV Model with Multiple Infection Stages and Treatment with Different Drug Classes. Bulletin of Mathematical Biology, 2016, 78, 322-349.	0.9	25
36	Analysis of HIV models with multiple target cell populations and general nonlinear rates of viral infection and cell death. Mathematics and Computers in Simulation, 2016, 124, 87-103.	2.4	11

#	Article	IF	CITATIONS
37	Stability analysis for delayed viral infection model with multitarget cells and general incidence rate. International Journal of Biomathematics, 2016, 09, 1650007.	1.5	2
38	A within-host virus model with multiple infected stages under time-varying environments. Applied Mathematics and Computation, 2015, 266, 119-134.	1.4	3
39	GLOBAL ANALYSIS OF AN EXTENDED HIV DYNAMICS MODEL WITH GENERAL INCIDENCE RATE. Journal of Biological Systems, 2015, 23, 401-421.	0.5	0
40	Permanence and extinction of a non-autonomous HIV-1 model with time delays. Discrete and Continuous Dynamical Systems - Series B, 2014, 19, 1783-1800.	0.5	6
41	A class of delayed viral models with saturation infection rate and immune response. Mathematical Methods in the Applied Sciences, 2013, 36, 125-142.	1.2	47
42	A class of delayed virus dynamics models with multiple target cells. Computational and Applied Mathematics, 2013, 32, 211-229.	1.3	6
43	DYNAMICS OF A NON-AUTONOMOUS HIV-1 INFECTION MODEL WITH DELAYS. International Journal of Biomathematics, 2013, 06, 1350030.	1.5	6
44	Global properties of a delayed HIV infection model with CTL immune response. Applied Mathematics and Computation, 2012, 218, 9405-9414.	1.4	54
45	Global properties of a delayed SIR epidemic model with multiple parallel infectious stages. Mathematical Biosciences and Engineering, 2012, 9, 685-695.	1.0	12
46	Dynamical behavior of a pest management model with impulsive effect and nonlinear incidence rate. Computational and Applied Mathematics, 2011, 30, 381-398.	1.0	4
47	Analysis of pest-epidemic model byÂreleasing diseased pest withÂimpulsive transmission. Nonlinear Dynamics, 2011, 65, 175-185.	2.7	16
48	Global stability of a virus dynamics model withÂBeddington–DeAngelis incidence rate andÂCTLÂimmuneÂresponse. Nonlinear Dynamics, 2011, 66, 825-830.	2.7	51
49	Effect of prey refuge on a harvested predator–prey model with generalized functional response. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 1052-1059.	1.7	44
50	A delayed HIV-1 infection model withÂBeddington–DeAngelis functional response. Nonlinear Dynamics, 2010, 62, 67-72.	2.7	44
51	A predator-prey system with two impulses on the diseased prey and a Beddington-DeAngelis response. Mathematical Methods in the Applied Sciences, 2009, 33, n/a-n/a.	1.2	2
52	Stability and Hopf bifurcation on a model for HIV infection of CD4+ T cells with delay. Chaos, Solitons and Fractals, 2009, 42, 1838-1844.	2.5	6
53	Pulse vaccination on SEIR epidemic model with nonlinear incidence rate. Applied Mathematics and Computation, 2009, 210, 398-404.	1.4	23
54	Mathematical model for the control of a pest population with impulsive perturbations on diseased pest. Applied Mathematical Modelling, 2009, 33, 3099-3106.	2.2	19

XIA WANG

#	Article	IF	CITATION
55	Analysis of a stage structured predator–prey Gompertz model with disturbing pulse and delay. Applied Mathematical Modelling, 2009, 33, 4231-4240.	2.2	8
56	Mathematical models for the control of a pest population by infected pest. Computers and Mathematics With Applications, 2008, 56, 266-278.	1.4	40
57	LYAPUNOV FUNCTION AND GLOBAL PROPERTIES OF VIRUS DYNAMICS WITH CTL IMMUNE RESPONSE. International Journal of Biomathematics, 2008, 01, 443-448.	1.5	25
58	GLOBAL PROPERTIES OF A MODEL OF IMMUNE EFFECTOR RESPONSES TO VIRAL INFECTIONS. International Journal of Modeling, Simulation, and Scientific Computing, 2007, 10, 495-503.	0.9	7
59	Global stability and periodic solution of a model for HIV infection of CD4+ T cells. Applied Mathematics and Computation, 2007, 189, 1331-1340.	1.4	27