
Crysten E Blaby-Haas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3153397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biology, 2013, 14, R41.	13.9	329
2	Insights into the red algae and eukaryotic evolution from the genome of <i>Porphyra umbilicalis</i> (Bangiophyceae, Rhodophyta). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6361-E6370.	3.3	233
3	The ins and outs of algal metal transport. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1531-1552.	1.9	173
4	The Chlamydomonas genome project: a decade on. Trends in Plant Science, 2014, 19, 672-680.	4.3	145
5	Systems and <i>Trans</i> -System Level Analysis Identifies Conserved Iron Deficiency Responses in the Plant Lineage. Plant Cell, 2012, 24, 3921-3948.	3.1	142
6	Lysosome-related Organelles as Mediators of Metal Homeostasis. Journal of Biological Chemistry, 2014, 289, 28129-28136.	1.6	114
7	Comparative and Functional Algal Genomics. Annual Review of Plant Biology, 2019, 70, 605-638.	8.6	76
8	Role of a Zn-independent DksA in Zn homeostasis and stringent response. Molecular Microbiology, 2011, 79, 700-715.	1.2	68
9	Iron economy in Chlamydomonas reinhardtii. Frontiers in Plant Science, 2013, 4, 337.	1.7	65
10	ldentification of Coq11, a New Coenzyme Q Biosynthetic Protein in the CoQ-Synthome in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2015, 290, 7517-7534.	1.6	65
11	Regulation of Oxygenic Photosynthesis during Trophic Transitions in the Green Alga <i>Chromochloris zofingiensis</i> . Plant Cell, 2019, 31, 579-601.	3.1	61
12	Evolution of a plant-specific copper chaperone family for chloroplast copper homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5480-7.	3.3	57
13	Genomeâ€wide analysis on <i>Chlamydomonas reinhardtii</i> reveals the impact of hydrogen peroxide on protein stress responses and overlap with other stress transcriptomes. Plant Journal, 2015, 84, 974-988.	2.8	55
14	Regulating cellular trace metal economy in algae. Current Opinion in Plant Biology, 2017, 39, 88-96.	3.5	52
15	YeiR: a metal-binding GTPase from Escherichia coli involved in metal homeostasis. Metallomics, 2012, 4, 488.	1.0	49
16	PHOTOSYSTEM II PROTEIN33, a Protein Conserved in the Plastid Lineage, Is Associated with the Chloroplast Thylakoid Membrane and Provides Stability to Photosystem II Supercomplexes in Arabidopsis. Plant Physiology, 2015, 167, 481-492.	2.3	46
17	Mining high-throughput experimental data to link gene and function. Trends in Biotechnology, 2011, 29, 174-182.	4.9	45
18	Synergistic use of plant-prokaryote comparative genomics for functional annotations. BMC Genomics, 2011, 12, S2.	1.2	43

CRYSTEN E BLABY-HAAS

#	Article	IF	CITATIONS
19	lron sparing and recycling in a compartmentalized cell. Current Opinion in Microbiology, 2013, 16, 677-685.	2.3	43
20	Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function. Journal of Lipid Research, 2019, 60, 1293-1310.	2.0	38
21	From economy to luxury: Copper homeostasis in Chlamydomonas and other algae. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118822.	1.9	35
22	Towards a Systems Approach in the Genetic Analysis of Archaea: Accelerating Mutant Construction and Phenotypic Analysis in <i>Haloferax volcanii</i> . Archaea, 2010, 2010, 1-11.	2.3	32
23	Widespread polycistronic gene expression in green algae. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
24	Activation of Autophagy by Metals in Chlamydomonas reinhardtii. Eukaryotic Cell, 2015, 14, 964-973.	3.4	29
25	Proteases Shape the Chlamydomonas Secretome: Comparison to Classical Neuropeptide Processing Machinery. Proteomes, 2018, 6, 36.	1.7	28
26	Plant GATA Factors: Their Biology, Phylogeny, and Phylogenomics. Annual Review of Plant Biology, 2022, 73, 123-148.	8.6	28
27	Ni induces the CRR1-dependent regulon revealing overlap and distinction between hypoxia and Cu deficiency responses in Chlamydomonas reinhardtii. Metallomics, 2016, 8, 679-691.	1.0	27
28	Erratum to "Towards a Systems Approach in the Genetic Analysis of Archaea: Accelerating Mutant Construction and Phenotypic Analysis in <i>Haloferax volcanii</i> ― Archaea, 2011, 2011, 1-1.	2.3	26
29	Widespread Distribution and Functional Specificity of the Copper Importer CcoA: Distinct Cu Uptake Routes for Bacterial Cytochrome <i>c</i> Oxidases. MBio, 2018, 9, .	1.8	25
30	Early eukaryotic origins for cilia-associated bioactive peptide amidating activity. Journal of Cell Science, 2016, 129, 943-56.	1.2	24
31	Plant single-cell solutions for energy and the environment. Communications Biology, 2021, 4, 962.	2.0	23
32	Zng1 is a GTP-dependent zinc transferase needed for activation of methionine aminopeptidase. Cell Reports, 2022, 39, 110834.	2.9	20
33	The <i>cbb</i> ₃ -type cytochrome oxidase assembly factor CcoG is a widely distributed cupric reductase. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21166-21175.	3.3	17
34	Chlamydomonas reinhardtii LFO1 Is an IsdG Family Heme Oxygenase. MSphere, 2017, 2, .	1.3	15
35	Colocality to Cofunctionality: Eukaryotic Gene Neighborhoods as a Resource for Function Discovery. Molecular Biology and Evolution, 2021, 38, 650-662.	3.5	14
36	Comparative differential cuproproteomes of <i>Rhodobacter capsulatus</i> reveal novel copper homeostasis related proteins. Metallomics, 2020, 12, 572-591.	1.0	12

CRYSTEN E BLABY-HAAS

#	Article	IF	CITATIONS
37	Cu Transport by the Extended Family of CcoA-like Transporters (CalT) in Proteobacteria. Scientific Reports, 2019, 9, 1208.	1.6	10
38	Maturation of Rhodobacter capsulatus Multicopper Oxidase CutO Depends on the CopA Copper Efflux Pathway and Requires the cutF Product. Frontiers in Microbiology, 2021, 12, 720644.	1.5	8
39	Genomics and Functional Genomics in Chlamydomonas reinhardtii. Microbiology Monographs, 2017, , 1-26.	0.3	4
40	Leveraging computational genomics to understand the molecular basis of metal homeostasis. New Phytologist, 2020, 228, 1472-1489.	3.5	4
41	Gene Expression Analysis by Arylsulfatase Assays in the Green Alga Chlamydomonas reinhardtii. Methods in Molecular Biology, 2018, 1755, 149-161.	0.4	3
42	Cyanobacteria provide a new paradigm in the regulation of cofactor dependence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	1
43	Using YFP as a Reporter of Gene Expression in the Green Alga Chlamydomonas reinhardtii. Methods in Molecular Biology, 2018, 1755, 135-148.	0.4	0
44	Characterization of Saccharomyces cerevisiae Coenzyme Q Biosynthetic Protein Coq11. FASEB Journal, 2017, 31, 781.9.	0.2	0
45	Polar algae flaunt their zinc assets. Nature Ecology and Evolution, 0, , .	3.4	0