Allan J B Watson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3153064/publications.pdf

Version: 2024-02-01

159585 161849 3,173 77 30 54 citations g-index h-index papers 89 89 89 3548 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Asymmetric Synthesis of Heterocyclic Chloroamines and Aziridines by Enantioselective Protonation of Catalytically Generated Enamines**. Chemistry - A European Journal, 2022, 28, .	3.3	4
2	Synthesis of 2-BMIDA Indoles via Heteroannulation: Applications in Drug Scaffold and Natural Product Synthesis. Organic Letters, 2022, 24, 3024-3027.	4.6	8
3	<i>In Vivo</i> Half-Life Extension of BMP1/TLL Metalloproteinase Inhibitors Using Small-Molecule Human Serum Albumin Binders. Bioconjugate Chemistry, 2021, 32, 279-289.	3.6	4
4	Cu(OTf) ₂ â€Mediated Crossâ€Coupling of Nitriles and Nâ€Heterocycles with Arylboronic Acids to Generate Nitrilium and Pyridinium Products**. Angewandte Chemie - International Edition, 2021, 60, 7935-7940.	13.8	11
5	Cu(OTf) 2 â€Mediated Crossâ€Coupling of Nitriles and Nâ€Heterocycles with Arylboronic Acids to Generate Nitrilium and Pyridinium Products**. Angewandte Chemie, 2021, 133, 8014-8019.	2.0	O
6	Direct, Lateâ€Stage Mono―N â€arylation of Pentamidine: Method Development, Mechanistic Insight, and Expedient Access to Novel Antiparastitics against Diamidineâ€Resistant Parasites. ChemMedChem, 2021, 16, 3396-3401.	3.2	2
7	An Alternative Synthesis of Cycloalkylâ€Substituted CPA Catalysts and Application in Asymmetric Protonation Reactions**. European Journal of Organic Chemistry, 2021, 2021, 4943-4945.	2.4	2
8	Four-Membered Rings With One Boron or Other Atom., 2021,, 385-385.		0
9	Boron Complexes in Organic Synthesis. , 2021, , .		O
10	Discovery, Scope, and Limitations of an <i>N</i> à€Dealkylation/ <i>N</i> â€Arylation of Secondary Sulfonamides under Chanâ^'Lam Conditions. Asian Journal of Organic Chemistry, 2020, 9, 364-367.	2.7	11
11	First experimental evidence for a bis-ethene chromium(I) complex forming from an activated ethene oligomerization catalyst. Science Advances, 2020, 6, .	10.3	17
12	The Problem with Problems: Fundamental to Applied Research Using Palladium. Synlett, 2020, 31, 1244-1258.	1.8	2
13	Catalytic Enantioselective Synthesis of Heterocyclic Vicinal Fluoroamines by Using Asymmetric Protonation: Method Development and Mechanistic Study. Chemistry - A European Journal, 2020, 26, 12249-12255.	3.3	18
14	Deoxyfluorination with CuF ₂ : Enabled by Using a Lewis Base Activating Group. Angewandte Chemie - International Edition, 2020, 59, 8460-8463.	13.8	22
15	Deoxyfluorination with CuF 2 : Enabled by Using a Lewis Base Activating Group. Angewandte Chemie, 2020, 132, 8538-8541.	2.0	6
16	N-Alkyl-α-amino acids in Nature and their biocatalytic preparation. Journal of Biotechnology, 2019, 293, 56-65.	3.8	28
17	Ni <i>vs.</i> Pd in Suzuki–Miyaura sp ² –sp ² cross-coupling: a head-to-head study in a comparable precatalyst/ligand system. Organic and Biomolecular Chemistry, 2019, 17, 5055-5059.	2.8	26
18	Mechanism of Cu-Catalyzed Aryl Boronic Acid Halodeboronation Using Electrophilic Halogen: Development of a Base-Catalyzed Iododeboronation for Radiolabeling Applications. Organic Letters, 2019, 21, 2488-2492.	4.6	31

#	Article	IF	CITATIONS
19	Mechanistic Development and Recent Applications of the Chan–Lam Amination. Chemical Reviews, 2019, 119, 12491-12523.	47.7	276
20	A Cascade Suzuki–Miyaura/Diels–Alder Protocol: Exploring the Bifunctional Utility of Vinyl Bpin. Synlett, 2019, 30, 787-791.	1.8	14
21	Contraâ€Thermodynamic, Photocatalytic <i>E</i> à†' <i>Z</i> Isomerization of Styrenyl Boron Species: Vectors to Facilitate Exploration of Twoâ€Dimensional Chemical Space. Angewandte Chemie, 2018, 130, 3222-3226.	2.0	36
22	Discovery of Tetrahydroquinoxalines as Bromodomain and Extra-Terminal Domain (BET) Inhibitors with Selectivity for the Second Bromodomain. Journal of Medicinal Chemistry, 2018, 61, 4317-4334.	6.4	94
23	Cyrene as a bio-based solvent for HATU mediated amide coupling. Organic and Biomolecular Chemistry, 2018, 16, 2851-2854.	2.8	59
24	Conventional and Bioinspired Syntheses of Monoterpene Indole Alkaloids. Studies in Natural Products Chemistry, 2018, 55, 1-29.	1.8	0
25	Contraâ€Thermodynamic, Photocatalytic <i>E</i> à†' <i>Z</i> Isomerization of Styrenyl Boron Species: Vectors to Facilitate Exploration of Twoâ€Dimensional Chemical Space. Angewandte Chemie - International Edition, 2018, 57, 3168-3172.	13.8	109
26	Practical synthesis of pharmaceutically relevant molecules enriched in sp ³ character. Chemical Communications, 2018, 54, 46-49.	4.1	18
27	Interrogating Pd(II) Anion Metathesis Using a Bifunctional Chemical Probe: A Transmetalation Switch. Journal of the American Chemical Society, 2018, 140, 126-130.	13.7	44
28	Scalable total synthesis and comprehensive structure–activity relationship studies of the phytotoxin coronatine. Nature Communications, 2018, 9, 1105.	12.8	16
29	Cyrene as a Bio-Based Solvent for the Suzuki–Miyaura Cross-Coupling. Synlett, 2018, 29, 650-654.	1.8	53
30	Dimethylisosorbide (DMI) as a Bio-Derived Solvent for Pd-Catalyzed Cross-Coupling Reactions. Synlett, 2018, 29, 2293-2297.	1.8	21
31	A flow platform for degradation-free CuAAC bioconjugation. Nature Communications, 2018, 9, 4021.	12.8	30
32	Mechanistic Insight Enables Practical, Scalable, Room Temperature Chan–Lam <i>N</i> -Arylation of <i>N</i> -Aryl Sulfonamides. ACS Catalysis, 2018, 8, 9560-9566.	11.2	57
33	Catalytic Enantioselective Synthesis of αâ€Chiral Azaheteroaryl Ethylamines by Asymmetric Protonation. Angewandte Chemie - International Edition, 2018, 57, 11374-11377.	13.8	44
34	Catalytic Enantioselective Synthesis of αâ€Chiral Azaheteroaryl Ethylamines by Asymmetric Protonation. Angewandte Chemie, 2018, 130, 11544-11547.	2.0	12
35	Biocatalytic Synthesis of Chiral Nâ€Functionalized Amino Acids. Angewandte Chemie - International Edition, 2018, 57, 13821-13824.	13.8	34
36	Biocatalytic Synthesis of Chiral Nâ€Functionalized Amino Acids. Angewandte Chemie, 2018, 130, 14017-14020.	2.0	14

#	Article	IF	CITATIONS
37	Emergence of Small-Molecule Non-RGD-Mimetic Inhibitors for RGD Integrins. Journal of Medicinal Chemistry, 2017, 60, 3241-3251.	6.4	40
38	Determining the Origin of Rateâ€Independent Chemoselectivity in CuAAC Reactions: An Alkyneâ€Specific Shift in Rateâ€Determining Step. Angewandte Chemie, 2017, 129, 3362-3366.	2.0	11
39	Determining the Origin of Rateâ€Independent Chemoselectivity in CuAAC Reactions: An Alkyneâ€Specific Shift in Rateâ€Determining Step. Angewandte Chemie - International Edition, 2017, 56, 3314-3318.	13.8	32
40	Rational Design of Autotaxin Inhibitors by Structural Evolution of Endogenous Modulators. Journal of Medicinal Chemistry, 2017, 60, 2006-2017.	6.4	34
41	Spectroscopic Studies of the Chan–Lam Amination: A Mechanism-Inspired Solution to Boronic Ester Reactivity. Journal of the American Chemical Society, 2017, 139, 4769-4779.	13.7	264
42	Strategy for Conditional Orthogonal Sequential CuAAC Reactions Using a Protected Aromatic Ynamine. Journal of Organic Chemistry, 2017, 82, 5461-5468.	3.2	17
43	Amidation of unactivated ester derivatives mediated by trifluoroethanol. Organic and Biomolecular Chemistry, 2017, 15, 3507-3518.	2.8	31
44	Structure–Activity Relationships of Small Molecule Autotaxin Inhibitors with a Discrete Binding Mode. Journal of Medicinal Chemistry, 2017, 60, 722-748.	6.4	29
45	Chemoselective Suzuki–Miyaura Crossâ€Coupling via Kinetic Transmetallation. Angewandte Chemie, 2017, 129, 1269-1273.	2.0	7
46	Chemoselective Suzuki–Miyaura Crossâ€Coupling via Kinetic Transmetallation. Angewandte Chemie - International Edition, 2017, 56, 1249-1253.	13.8	51
47	Connecting the Dots: Method Development Using Sustainable Solvents. CheM, 2017, 3, 365-368.	11.7	15
48	Recent Developments in Organoboron Chemistry: Old Dogs, New Tricks. CheM, 2017, 3, 31-55.	11.7	424
49	A one-pot tandem chemoselective allylation/cross-coupling via temperature control of a multi-nucleophile/electrophile system. Chemical Communications, 2017, 53, 9139-9142.	4.1	6
50	A Multicomponent Route to Functionalized Amides and Oxazolidinones. Organic Letters, 2017, 19, 6736-6739.	4.6	7
51	Chemoselective One-Pot Synthesis of Functionalized Amino-azaheterocycles Enabled by COware. Organic Letters, 2017, 19, 6368-6371.	4.6	18
52	Modular, Step-Efficient Palladium-Catalyzed Cross-Coupling Strategy To Access C6-Heteroaryl 2-Aminopurine Ribonucleosides. Organic Letters, 2017, 19, 3759-3762.	4.6	14
53	Chemoselective oxidation of aryl organoboron systems enabled by boronic acid-selective phase transfer. Chemical Science, 2017, 8, 1551-1559.	7.4	59
54	Scope and limitations of a DMF bio-alternative within Sonogashira cross-coupling and Cacchi-type annulation. Beilstein Journal of Organic Chemistry, 2016, 12, 2005-2011.	2.2	82

#	Article	IF	CITATIONS
55	Highlights from the 51st EUCHEM conference on stereochemistry, Býrgenstock, Switzerland, May 2016. Chemical Communications, 2016, 52, 9173-9177.	4.1	O
56	B-Protected Boronic Acids: Methodology Development and Strategic Application. ACS Symposium Series, 2016, , 379-413.	0.5	8
57	Chan–Evans–Lam Amination of Boronic Acid Pinacol (BPin) Esters: Overcoming the Aryl Amine Problem. Journal of Organic Chemistry, 2016, 81, 3942-3950.	3.2	106
58	Synthetic Approaches to Coronafacic Acid, Coronamic Acid, and Coronatine. Synthesis, 2016, 48, 3429-3448.	2.3	12
59	GSK6853, a Chemical Probe for Inhibition of the BRPF1 Bromodomain. ACS Medicinal Chemistry Letters, 2016, 7, 552-557.	2.8	54
60	Synthesis of 2-BMIDA 6,5-bicyclic heterocycles by Cu(<scp>i</scp>)/Pd(0)/Cu(<scp>i</scp>) cascade catalysis of 2-iodoaniline/phenols. Chemical Communications, 2016, 52, 8703-8706.	4.1	24
61	Chemoselective Sequential Click Ligations Directed by Enhanced Reactivity of an Aromatic Ynamine. Organic Letters, 2016, 18, 1694-1697.	4.6	25
62	When two reactions become one. Science, 2016, 351, 26-27.	12.6	0
63	Development of Autotaxin Inhibitors: An Overview of the Patent and Primary Literature. Journal of Medicinal Chemistry, 2016, 59, 5604-5621.	6.4	59
64	Tandem Chemoselective Suzuki–Miyaura Crossâ€Coupling Enabled by Nucleophile Speciation Control. Angewandte Chemie - International Edition, 2015, 54, 9976-9979.	13.8	50
65	Speciation Control During Suzuki–Miyaura Cross oupling of Haloaryl and Haloalkenyl MIDA Boronic Esters. Chemistry - A European Journal, 2015, 21, 8951-8964.	3.3	47
66	One-Pot Homologation of Boronic Acids: A Platform for Diversity-Oriented Synthesis. Organic Letters, 2015, 17, 6030-6033.	4.6	34
67	A modular synthesis of functionalised phenols enabled by controlled boron speciation. Organic and Biomolecular Chemistry, 2015, 13, 3093-3102.	2.8	23
68	Identification of a novel class of autotaxin inhibitors through cross-screening. MedChemComm, 2015, 6, 1149-1155.	3.4	7
69	Strategies towards Chemoselective Suzuki–Miyaura Cross-Coupling. Synlett, 2015, 26, 1139-1144.	1.8	21
70	Catalytic amidation of unactivated ester derivatives mediated by trifluoroethanol. Chemical Communications, 2015, 51, 9495-9498.	4.1	51
71	Chemoselective Boronic Ester Synthesis by Controlled Speciation. Angewandte Chemie - International Edition, 2014, 53, 12077-12080.	13.8	50
72	Amidation of Esters with Amino Alcohols Using Organobase Catalysis. Journal of Organic Chemistry, 2014, 79, 9347-9354.	3.2	27

# Ar	TICLE	IF	CITATIONS
	evelopment of a solvent selection guide for aldehyde-based direct reductive amination processes. een Chemistry, 2013, 15, 1159.	9.0	59
74 De En	evelopment of a Sustainable Catalytic Ester Amidation Process. ACS Sustainable Chemistry and gineering, 2013, 1, 1339-1344.	6.7	37
75 dic	aluation of alternative solvents in common amide coupling reactions: replacement of chloromethane and N,N-dimethylformamide. Green Chemistry, 2013, 15, 596.	9.0	118
76 Asy	ymmetric Rhodium-Catalysed Addition of Arylboronic Acids to Acyclic Unsaturated Esters ontaining a Basic \hat{I}^3 -Amino Group. Synlett, 2012, 23, 2817-2821.	1.8	16
	placement of dichloromethane within chromatographic purification: a guide to alternative Ivents. Green Chemistry, 2012, 14, 3016.	9.0	41